| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2023 Juraj Oršulić, University of Zagreb <juraj.orsulic@fer.hr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_EULERANGLES_H | 
 | #define EIGEN_EULERANGLES_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |  * | 
 |  * | 
 |  * \returns the canonical Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a | 
 |  * a0,\a a1,\a a2) | 
 |  * | 
 |  * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. | 
 |  * For instance, in: | 
 |  * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode | 
 |  * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that | 
 |  * we have the following equality: | 
 |  * \code | 
 |  * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) | 
 |  *      * AngleAxisf(ea[1], Vector3f::UnitX()) | 
 |  *      * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode | 
 |  * This corresponds to the right-multiply conventions (with right hand side frames). | 
 |  * | 
 |  * For Tait-Bryan angle configurations (a0 != a2), the returned angles are in the ranges [-pi:pi]x[-pi/2:pi/2]x[-pi:pi]. | 
 |  * For proper Euler angle configurations (a0 == a2), the returned angles are in the ranges [-pi:pi]x[0:pi]x[-pi:pi]. | 
 |  * | 
 |  * The approach used is also described here: | 
 |  * https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2012/07/euler-angles.pdf | 
 |  * | 
 |  * \sa class AngleAxis | 
 |  */ | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar, 3, 1> MatrixBase<Derived>::canonicalEulerAngles( | 
 |     Index a0, Index a1, Index a2) const { | 
 |   /* Implemented from Graphics Gems IV */ | 
 |   EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3) | 
 |  | 
 |   Matrix<Scalar, 3, 1> res; | 
 |  | 
 |   const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1; | 
 |   const Index i = a0; | 
 |   const Index j = (a0 + 1 + odd) % 3; | 
 |   const Index k = (a0 + 2 - odd) % 3; | 
 |  | 
 |   if (a0 == a2) { | 
 |     // Proper Euler angles (same first and last axis). | 
 |     // The i, j, k indices enable addressing the input matrix as the XYX archetype matrix (see Graphics Gems IV), | 
 |     // where e.g. coeff(k, i) means third column, first row in the XYX archetype matrix: | 
 |     //  c2      s2s1              s2c1 | 
 |     //  s2s3   -c2s1s3 + c1c3    -c2c1s3 - s1c3 | 
 |     // -s2c3    c2s1c3 + c1s3     c2c1c3 - s1s3 | 
 |  | 
 |     // Note: s2 is always positive. | 
 |     Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i)); | 
 |     if (odd) { | 
 |       res[0] = numext::atan2(coeff(j, i), coeff(k, i)); | 
 |       // s2 is always positive, so res[1] will be within the canonical [0, pi] range | 
 |       res[1] = numext::atan2(s2, coeff(i, i)); | 
 |     } else { | 
 |       // In the !odd case, signs of all three angles are flipped at the very end. To keep the solution within the | 
 |       // canonical range, we flip the solution and make res[1] always negative here (since s2 is always positive, | 
 |       // -atan2(s2, c2) will always be negative). The final flip at the end due to !odd will thus make res[1] positive | 
 |       // and canonical. NB: in the general case, there are two correct solutions, but only one is canonical. For proper | 
 |       // Euler angles, flipping from one solution to the other involves flipping the sign of the second angle res[1] and | 
 |       // adding/subtracting pi to the first and third angles. The addition/subtraction of pi to the first angle res[0] | 
 |       // is handled here by flipping the signs of arguments to atan2, while the calculation of the third angle does not | 
 |       // need special adjustment since it uses the adjusted res[0] as the input and produces a correct result. | 
 |       res[0] = numext::atan2(-coeff(j, i), -coeff(k, i)); | 
 |       res[1] = -numext::atan2(s2, coeff(i, i)); | 
 |     } | 
 |  | 
 |     // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, | 
 |     // we can compute their respective rotation, and apply its inverse to M. Since the result must | 
 |     // be a rotation around x, we have: | 
 |     // | 
 |     //  c2  s1.s2 c1.s2                   1  0   0 | 
 |     //  0   c1    -s1       *    M    =   0  c3  s3 | 
 |     //  -s2 s1.c2 c1.c2                   0 -s3  c3 | 
 |     // | 
 |     //  Thus:  m11.c1 - m21.s1 = c3  &   m12.c1 - m22.s1 = s3 | 
 |  | 
 |     Scalar s1 = numext::sin(res[0]); | 
 |     Scalar c1 = numext::cos(res[0]); | 
 |     res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j)); | 
 |   } else { | 
 |     // Tait-Bryan angles (all three axes are different; typically used for yaw-pitch-roll calculations). | 
 |     // The i, j, k indices enable addressing the input matrix as the XYZ archetype matrix (see Graphics Gems IV), | 
 |     // where e.g. coeff(k, i) means third column, first row in the XYZ archetype matrix: | 
 |     //  c2c3    s2s1c3 - c1s3     s2c1c3 + s1s3 | 
 |     //  c2s3    s2s1s3 + c1c3     s2c1s3 - s1c3 | 
 |     // -s2      c2s1              c2c1 | 
 |  | 
 |     res[0] = numext::atan2(coeff(j, k), coeff(k, k)); | 
 |  | 
 |     Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j)); | 
 |     // c2 is always positive, so the following atan2 will always return a result in the correct canonical middle angle | 
 |     // range [-pi/2, pi/2] | 
 |     res[1] = numext::atan2(-coeff(i, k), c2); | 
 |  | 
 |     Scalar s1 = numext::sin(res[0]); | 
 |     Scalar c1 = numext::cos(res[0]); | 
 |     res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j)); | 
 |   } | 
 |   if (!odd) { | 
 |     res = -res; | 
 |   } | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |  * | 
 |  * | 
 |  * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a | 
 |  * a2) | 
 |  * | 
 |  * NB: The returned angles are in non-canonical ranges [0:pi]x[-pi:pi]x[-pi:pi]. For canonical Tait-Bryan/proper Euler | 
 |  * ranges, use canonicalEulerAngles. | 
 |  * | 
 |  * \sa MatrixBase::canonicalEulerAngles | 
 |  * \sa class AngleAxis | 
 |  */ | 
 | template <typename Derived> | 
 | EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar, 3, 1> | 
 | MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const { | 
 |   /* Implemented from Graphics Gems IV */ | 
 |   EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3) | 
 |  | 
 |   Matrix<Scalar, 3, 1> res; | 
 |  | 
 |   const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1; | 
 |   const Index i = a0; | 
 |   const Index j = (a0 + 1 + odd) % 3; | 
 |   const Index k = (a0 + 2 - odd) % 3; | 
 |  | 
 |   if (a0 == a2) { | 
 |     res[0] = numext::atan2(coeff(j, i), coeff(k, i)); | 
 |     if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0))) { | 
 |       if (res[0] > Scalar(0)) { | 
 |         res[0] -= Scalar(EIGEN_PI); | 
 |       } else { | 
 |         res[0] += Scalar(EIGEN_PI); | 
 |       } | 
 |  | 
 |       Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i)); | 
 |       res[1] = -numext::atan2(s2, coeff(i, i)); | 
 |     } else { | 
 |       Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i)); | 
 |       res[1] = numext::atan2(s2, coeff(i, i)); | 
 |     } | 
 |  | 
 |     // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, | 
 |     // we can compute their respective rotation, and apply its inverse to M. Since the result must | 
 |     // be a rotation around x, we have: | 
 |     // | 
 |     //  c2  s1.s2 c1.s2                   1  0   0 | 
 |     //  0   c1    -s1       *    M    =   0  c3  s3 | 
 |     //  -s2 s1.c2 c1.c2                   0 -s3  c3 | 
 |     // | 
 |     //  Thus:  m11.c1 - m21.s1 = c3  &   m12.c1 - m22.s1 = s3 | 
 |  | 
 |     Scalar s1 = numext::sin(res[0]); | 
 |     Scalar c1 = numext::cos(res[0]); | 
 |     res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j)); | 
 |   } else { | 
 |     res[0] = numext::atan2(coeff(j, k), coeff(k, k)); | 
 |     Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j)); | 
 |     if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0))) { | 
 |       if (res[0] > Scalar(0)) { | 
 |         res[0] -= Scalar(EIGEN_PI); | 
 |       } else { | 
 |         res[0] += Scalar(EIGEN_PI); | 
 |       } | 
 |       res[1] = numext::atan2(-coeff(i, k), -c2); | 
 |     } else { | 
 |       res[1] = numext::atan2(-coeff(i, k), c2); | 
 |     } | 
 |     Scalar s1 = numext::sin(res[0]); | 
 |     Scalar c1 = numext::cos(res[0]); | 
 |     res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j)); | 
 |   } | 
 |   if (!odd) { | 
 |     res = -res; | 
 |   } | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_EULERANGLES_H |