|  | // // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // This file is modified from the colamd/symamd library. The copyright is below | 
|  |  | 
|  | //   The authors of the code itself are Stefan I. Larimore and Timothy A. | 
|  | //   Davis (davis@cise.ufl.edu), University of Florida.  The algorithm was | 
|  | //   developed in collaboration with John Gilbert, Xerox PARC, and Esmond | 
|  | //   Ng, Oak Ridge National Laboratory. | 
|  | // | 
|  | //     Date: | 
|  | // | 
|  | //   September 8, 2003.  Version 2.3. | 
|  | // | 
|  | //     Acknowledgements: | 
|  | // | 
|  | //   This work was supported by the National Science Foundation, under | 
|  | //   grants DMS-9504974 and DMS-9803599. | 
|  | // | 
|  | //     Notice: | 
|  | // | 
|  | //   Copyright (c) 1998-2003 by the University of Florida. | 
|  | //   All Rights Reserved. | 
|  | // | 
|  | //   THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY | 
|  | //   EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK. | 
|  | // | 
|  | //   Permission is hereby granted to use, copy, modify, and/or distribute | 
|  | //   this program, provided that the Copyright, this License, and the | 
|  | //   Availability of the original version is retained on all copies and made | 
|  | //   accessible to the end-user of any code or package that includes COLAMD | 
|  | //   or any modified version of COLAMD. | 
|  | // | 
|  | //     Availability: | 
|  | // | 
|  | //   The colamd/symamd library is available at | 
|  | // | 
|  | //       http://www.suitesparse.com | 
|  |  | 
|  | #ifndef EIGEN_COLAMD_H | 
|  | #define EIGEN_COLAMD_H | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | namespace Colamd { | 
|  |  | 
|  | /* Ensure that debugging is turned off: */ | 
|  | #ifndef COLAMD_NDEBUG | 
|  | #define COLAMD_NDEBUG | 
|  | #endif /* NDEBUG */ | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === Knob and statistics definitions ====================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* size of the knobs [ ] array.  Only knobs [0..1] are currently used. */ | 
|  | const int NKnobs = 20; | 
|  |  | 
|  | /* number of output statistics.  Only stats [0..6] are currently used. */ | 
|  | const int NStats = 20; | 
|  |  | 
|  | /* Indices into knobs and stats array. */ | 
|  | enum KnobsStatsIndex { | 
|  | /* knobs [0] and stats [0]: dense row knob and output statistic. */ | 
|  | DenseRow = 0, | 
|  |  | 
|  | /* knobs [1] and stats [1]: dense column knob and output statistic. */ | 
|  | DenseCol = 1, | 
|  |  | 
|  | /* stats [2]: memory defragmentation count output statistic */ | 
|  | DefragCount = 2, | 
|  |  | 
|  | /* stats [3]: colamd status:  zero OK, > 0 warning or notice, < 0 error */ | 
|  | Status = 3, | 
|  |  | 
|  | /* stats [4..6]: error info, or info on jumbled columns */ | 
|  | Info1 = 4, | 
|  | Info2 = 5, | 
|  | Info3 = 6 | 
|  | }; | 
|  |  | 
|  | /* error codes returned in stats [3]: */ | 
|  | enum Status { | 
|  | Ok = 0, | 
|  | OkButJumbled = 1, | 
|  | ErrorANotPresent = -1, | 
|  | ErrorPNotPresent = -2, | 
|  | ErrorNrowNegative = -3, | 
|  | ErrorNcolNegative = -4, | 
|  | ErrorNnzNegative = -5, | 
|  | ErrorP0Nonzero = -6, | 
|  | ErrorATooSmall = -7, | 
|  | ErrorColLengthNegative = -8, | 
|  | ErrorRowIndexOutOfBounds = -9, | 
|  | ErrorOutOfMemory = -10, | 
|  | ErrorInternalError = -999 | 
|  | }; | 
|  | /* ========================================================================== */ | 
|  | /* === Definitions ========================================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | template <typename IndexType> | 
|  | IndexType ones_complement(const IndexType r) { | 
|  | return (-(r)-1); | 
|  | } | 
|  |  | 
|  | /* -------------------------------------------------------------------------- */ | 
|  | const int Empty = -1; | 
|  |  | 
|  | /* Row and column status */ | 
|  | enum RowColumnStatus { Alive = 0, Dead = -1 }; | 
|  |  | 
|  | /* Column status */ | 
|  | enum ColumnStatus { DeadPrincipal = -1, DeadNonPrincipal = -2 }; | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === Colamd reporting mechanism =========================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | // == Row and Column structures == | 
|  | template <typename IndexType> | 
|  | struct ColStructure { | 
|  | IndexType start; /* index for A of first row in this column, or Dead */ | 
|  | /* if column is dead */ | 
|  | IndexType length; /* number of rows in this column */ | 
|  | union { | 
|  | IndexType thickness; /* number of original columns represented by this */ | 
|  | /* col, if the column is alive */ | 
|  | IndexType parent; /* parent in parent tree super-column structure, if */ | 
|  | /* the column is dead */ | 
|  | } shared1; | 
|  | union { | 
|  | IndexType score; /* the score used to maintain heap, if col is alive */ | 
|  | IndexType order; /* pivot ordering of this column, if col is dead */ | 
|  | } shared2; | 
|  | union { | 
|  | IndexType headhash; /* head of a hash bucket, if col is at the head of */ | 
|  | /* a degree list */ | 
|  | IndexType hash; /* hash value, if col is not in a degree list */ | 
|  | IndexType prev; /* previous column in degree list, if col is in a */ | 
|  | /* degree list (but not at the head of a degree list) */ | 
|  | } shared3; | 
|  | union { | 
|  | IndexType degree_next; /* next column, if col is in a degree list */ | 
|  | IndexType hash_next;   /* next column, if col is in a hash list */ | 
|  | } shared4; | 
|  |  | 
|  | inline bool is_dead() const { return start < Alive; } | 
|  |  | 
|  | inline bool is_alive() const { return start >= Alive; } | 
|  |  | 
|  | inline bool is_dead_principal() const { return start == DeadPrincipal; } | 
|  |  | 
|  | inline void kill_principal() { start = DeadPrincipal; } | 
|  |  | 
|  | inline void kill_non_principal() { start = DeadNonPrincipal; } | 
|  | }; | 
|  |  | 
|  | template <typename IndexType> | 
|  | struct RowStructure { | 
|  | IndexType start;  /* index for A of first col in this row */ | 
|  | IndexType length; /* number of principal columns in this row */ | 
|  | union { | 
|  | IndexType degree; /* number of principal & non-principal columns in row */ | 
|  | IndexType p;      /* used as a row pointer in init_rows_cols () */ | 
|  | } shared1; | 
|  | union { | 
|  | IndexType mark;         /* for computing set differences and marking dead rows*/ | 
|  | IndexType first_column; /* first column in row (used in garbage collection) */ | 
|  | } shared2; | 
|  |  | 
|  | inline bool is_dead() const { return shared2.mark < Alive; } | 
|  |  | 
|  | inline bool is_alive() const { return shared2.mark >= Alive; } | 
|  |  | 
|  | inline void kill() { shared2.mark = Dead; } | 
|  | }; | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === Colamd recommended memory size ======================================= */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | The recommended length Alen of the array A passed to colamd is given by | 
|  | the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro.  It returns -1 if any | 
|  | argument is negative.  2*nnz space is required for the row and column | 
|  | indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is | 
|  | required for the Col and Row arrays, respectively, which are internal to | 
|  | colamd.  An additional n_col space is the minimal amount of "elbow room", | 
|  | and nnz/5 more space is recommended for run time efficiency. | 
|  |  | 
|  | This macro is not needed when using symamd. | 
|  |  | 
|  | Explicit typecast to IndexType added Sept. 23, 2002, COLAMD version 2.2, to avoid | 
|  | gcc -pedantic warning messages. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | inline IndexType colamd_c(IndexType n_col) { | 
|  | return IndexType(((n_col) + 1) * sizeof(ColStructure<IndexType>) / sizeof(IndexType)); | 
|  | } | 
|  |  | 
|  | template <typename IndexType> | 
|  | inline IndexType colamd_r(IndexType n_row) { | 
|  | return IndexType(((n_row) + 1) * sizeof(RowStructure<IndexType>) / sizeof(IndexType)); | 
|  | } | 
|  |  | 
|  | // Prototypes of non-user callable routines | 
|  | template <typename IndexType> | 
|  | static IndexType init_rows_cols(IndexType n_row, IndexType n_col, RowStructure<IndexType> Row[], | 
|  | ColStructure<IndexType> col[], IndexType A[], IndexType p[], IndexType stats[NStats]); | 
|  |  | 
|  | template <typename IndexType> | 
|  | static void init_scoring(IndexType n_row, IndexType n_col, RowStructure<IndexType> Row[], ColStructure<IndexType> Col[], | 
|  | IndexType A[], IndexType head[], double knobs[NKnobs], IndexType *p_n_row2, | 
|  | IndexType *p_n_col2, IndexType *p_max_deg); | 
|  |  | 
|  | template <typename IndexType> | 
|  | static IndexType find_ordering(IndexType n_row, IndexType n_col, IndexType Alen, RowStructure<IndexType> Row[], | 
|  | ColStructure<IndexType> Col[], IndexType A[], IndexType head[], IndexType n_col2, | 
|  | IndexType max_deg, IndexType pfree); | 
|  |  | 
|  | template <typename IndexType> | 
|  | static void order_children(IndexType n_col, ColStructure<IndexType> Col[], IndexType p[]); | 
|  |  | 
|  | template <typename IndexType> | 
|  | static void detect_super_cols(ColStructure<IndexType> Col[], IndexType A[], IndexType head[], IndexType row_start, | 
|  | IndexType row_length); | 
|  |  | 
|  | template <typename IndexType> | 
|  | static IndexType garbage_collection(IndexType n_row, IndexType n_col, RowStructure<IndexType> Row[], | 
|  | ColStructure<IndexType> Col[], IndexType A[], IndexType *pfree); | 
|  |  | 
|  | template <typename IndexType> | 
|  | static inline IndexType clear_mark(IndexType n_row, RowStructure<IndexType> Row[]); | 
|  |  | 
|  | /* === No debugging ========================================================= */ | 
|  |  | 
|  | #define COLAMD_DEBUG0(params) ; | 
|  | #define COLAMD_DEBUG1(params) ; | 
|  | #define COLAMD_DEBUG2(params) ; | 
|  | #define COLAMD_DEBUG3(params) ; | 
|  | #define COLAMD_DEBUG4(params) ; | 
|  |  | 
|  | #define COLAMD_ASSERT(expression) ((void)0) | 
|  |  | 
|  | /** | 
|  | * \brief Returns the recommended value of Alen | 
|  | * | 
|  | * Returns recommended value of Alen for use by colamd. | 
|  | * Returns -1 if any input argument is negative. | 
|  | * The use of this routine or macro is optional. | 
|  | * Note that the macro uses its arguments   more than once, | 
|  | * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED. | 
|  | * | 
|  | * \param nnz nonzeros in A | 
|  | * \param n_row number of rows in A | 
|  | * \param n_col number of columns in A | 
|  | * \return recommended value of Alen for use by colamd | 
|  | */ | 
|  | template <typename IndexType> | 
|  | inline IndexType recommended(IndexType nnz, IndexType n_row, IndexType n_col) { | 
|  | if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0) | 
|  | return (-1); | 
|  | else | 
|  | return (2 * (nnz) + colamd_c(n_col) + colamd_r(n_row) + (n_col) + ((nnz) / 5)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief set default parameters  The use of this routine is optional. | 
|  | * | 
|  | * Colamd: rows with more than (knobs [DenseRow] * n_col) | 
|  | * entries are removed prior to ordering.  Columns with more than | 
|  | * (knobs [DenseCol] * n_row) entries are removed prior to | 
|  | * ordering, and placed last in the output column ordering. | 
|  | * | 
|  | * DenseRow and DenseCol are defined as 0 and 1, | 
|  | * respectively, in colamd.h.  Default values of these two knobs | 
|  | * are both 0.5.  Currently, only knobs [0] and knobs [1] are | 
|  | * used, but future versions may use more knobs.  If so, they will | 
|  | * be properly set to their defaults by the future version of | 
|  | * colamd_set_defaults, so that the code that calls colamd will | 
|  | * not need to change, assuming that you either use | 
|  | * colamd_set_defaults, or pass a (double *) NULL pointer as the | 
|  | * knobs array to colamd or symamd. | 
|  | * | 
|  | * \param knobs parameter settings for colamd | 
|  | */ | 
|  |  | 
|  | static inline void set_defaults(double knobs[NKnobs]) { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | int i; | 
|  |  | 
|  | if (!knobs) { | 
|  | return; /* no knobs to initialize */ | 
|  | } | 
|  | for (i = 0; i < NKnobs; i++) { | 
|  | knobs[i] = 0; | 
|  | } | 
|  | knobs[Colamd::DenseRow] = 0.5; /* ignore rows over 50% dense */ | 
|  | knobs[Colamd::DenseCol] = 0.5; /* ignore columns over 50% dense */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief  Computes a column ordering using the column approximate minimum degree ordering | 
|  | * | 
|  | * Computes a column ordering (Q) of A such that P(AQ)=LU or | 
|  | * (AQ)'AQ=LL' have less fill-in and require fewer floating point | 
|  | * operations than factorizing the unpermuted matrix A or A'A, | 
|  | * respectively. | 
|  | * | 
|  | * | 
|  | * \param n_row number of rows in A | 
|  | * \param n_col number of columns in A | 
|  | * \param Alen, size of the array A | 
|  | * \param A row indices of the matrix, of size ALen | 
|  | * \param p column pointers of A, of size n_col+1 | 
|  | * \param knobs parameter settings for colamd | 
|  | * \param stats colamd output statistics and error codes | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static bool compute_ordering(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, | 
|  | double knobs[NKnobs], IndexType stats[NStats]) { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType i;                          /* loop index */ | 
|  | IndexType nnz;                        /* nonzeros in A */ | 
|  | IndexType Row_size;                   /* size of Row [], in integers */ | 
|  | IndexType Col_size;                   /* size of Col [], in integers */ | 
|  | IndexType need;                       /* minimum required length of A */ | 
|  | Colamd::RowStructure<IndexType> *Row; /* pointer into A of Row [0..n_row] array */ | 
|  | Colamd::ColStructure<IndexType> *Col; /* pointer into A of Col [0..n_col] array */ | 
|  | IndexType n_col2;                     /* number of non-dense, non-empty columns */ | 
|  | IndexType n_row2;                     /* number of non-dense, non-empty rows */ | 
|  | IndexType ngarbage;                   /* number of garbage collections performed */ | 
|  | IndexType max_deg;                    /* maximum row degree */ | 
|  | double default_knobs[NKnobs];         /* default knobs array */ | 
|  |  | 
|  | /* === Check the input arguments ======================================== */ | 
|  |  | 
|  | if (!stats) { | 
|  | COLAMD_DEBUG0(("colamd: stats not present\n")); | 
|  | return (false); | 
|  | } | 
|  | for (i = 0; i < NStats; i++) { | 
|  | stats[i] = 0; | 
|  | } | 
|  | stats[Colamd::Status] = Colamd::Ok; | 
|  | stats[Colamd::Info1] = -1; | 
|  | stats[Colamd::Info2] = -1; | 
|  |  | 
|  | if (!A) /* A is not present */ | 
|  | { | 
|  | stats[Colamd::Status] = Colamd::ErrorANotPresent; | 
|  | COLAMD_DEBUG0(("colamd: A not present\n")); | 
|  | return (false); | 
|  | } | 
|  |  | 
|  | if (!p) /* p is not present */ | 
|  | { | 
|  | stats[Colamd::Status] = Colamd::ErrorPNotPresent; | 
|  | COLAMD_DEBUG0(("colamd: p not present\n")); | 
|  | return (false); | 
|  | } | 
|  |  | 
|  | if (n_row < 0) /* n_row must be >= 0 */ | 
|  | { | 
|  | stats[Colamd::Status] = Colamd::ErrorNrowNegative; | 
|  | stats[Colamd::Info1] = n_row; | 
|  | COLAMD_DEBUG0(("colamd: nrow negative %d\n", n_row)); | 
|  | return (false); | 
|  | } | 
|  |  | 
|  | if (n_col < 0) /* n_col must be >= 0 */ | 
|  | { | 
|  | stats[Colamd::Status] = Colamd::ErrorNcolNegative; | 
|  | stats[Colamd::Info1] = n_col; | 
|  | COLAMD_DEBUG0(("colamd: ncol negative %d\n", n_col)); | 
|  | return (false); | 
|  | } | 
|  |  | 
|  | nnz = p[n_col]; | 
|  | if (nnz < 0) /* nnz must be >= 0 */ | 
|  | { | 
|  | stats[Colamd::Status] = Colamd::ErrorNnzNegative; | 
|  | stats[Colamd::Info1] = nnz; | 
|  | COLAMD_DEBUG0(("colamd: number of entries negative %d\n", nnz)); | 
|  | return (false); | 
|  | } | 
|  |  | 
|  | if (p[0] != 0) { | 
|  | stats[Colamd::Status] = Colamd::ErrorP0Nonzero; | 
|  | stats[Colamd::Info1] = p[0]; | 
|  | COLAMD_DEBUG0(("colamd: p[0] not zero %d\n", p[0])); | 
|  | return (false); | 
|  | } | 
|  |  | 
|  | /* === If no knobs, set default knobs =================================== */ | 
|  |  | 
|  | if (!knobs) { | 
|  | set_defaults(default_knobs); | 
|  | knobs = default_knobs; | 
|  | } | 
|  |  | 
|  | /* === Allocate the Row and Col arrays from array A ===================== */ | 
|  |  | 
|  | Col_size = colamd_c(n_col); | 
|  | Row_size = colamd_r(n_row); | 
|  | need = 2 * nnz + n_col + Col_size + Row_size; | 
|  |  | 
|  | if (need > Alen) { | 
|  | /* not enough space in array A to perform the ordering */ | 
|  | stats[Colamd::Status] = Colamd::ErrorATooSmall; | 
|  | stats[Colamd::Info1] = need; | 
|  | stats[Colamd::Info2] = Alen; | 
|  | COLAMD_DEBUG0(("colamd: Need Alen >= %d, given only Alen = %d\n", need, Alen)); | 
|  | return (false); | 
|  | } | 
|  |  | 
|  | Alen -= Col_size + Row_size; | 
|  | Col = (ColStructure<IndexType> *)&A[Alen]; | 
|  | Row = (RowStructure<IndexType> *)&A[Alen + Col_size]; | 
|  |  | 
|  | /* === Construct the row and column data structures ===================== */ | 
|  |  | 
|  | if (!Colamd::init_rows_cols(n_row, n_col, Row, Col, A, p, stats)) { | 
|  | /* input matrix is invalid */ | 
|  | COLAMD_DEBUG0(("colamd: Matrix invalid\n")); | 
|  | return (false); | 
|  | } | 
|  |  | 
|  | /* === Initialize scores, kill dense rows/columns ======================= */ | 
|  |  | 
|  | Colamd::init_scoring(n_row, n_col, Row, Col, A, p, knobs, &n_row2, &n_col2, &max_deg); | 
|  |  | 
|  | /* === Order the supercolumns =========================================== */ | 
|  |  | 
|  | ngarbage = Colamd::find_ordering(n_row, n_col, Alen, Row, Col, A, p, n_col2, max_deg, 2 * nnz); | 
|  |  | 
|  | /* === Order the non-principal columns ================================== */ | 
|  |  | 
|  | Colamd::order_children(n_col, Col, p); | 
|  |  | 
|  | /* === Return statistics in stats ======================================= */ | 
|  |  | 
|  | stats[Colamd::DenseRow] = n_row - n_row2; | 
|  | stats[Colamd::DenseCol] = n_col - n_col2; | 
|  | stats[Colamd::DefragCount] = ngarbage; | 
|  | COLAMD_DEBUG0(("colamd: done.\n")); | 
|  | return (true); | 
|  | } | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === NON-USER-CALLABLE ROUTINES: ========================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* There are no user-callable routines beyond this point in the file */ | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === init_rows_cols ======================================================= */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Takes the column form of the matrix in A and creates the row form of the | 
|  | matrix.  Also, row and column attributes are stored in the Col and Row | 
|  | structs.  If the columns are un-sorted or contain duplicate row indices, | 
|  | this routine will also sort and remove duplicate row indices from the | 
|  | column form of the matrix.  Returns false if the matrix is invalid, | 
|  | true otherwise.  Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static IndexType init_rows_cols /* returns true if OK, or false otherwise */ | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_row,               /* number of rows of A */ | 
|  | IndexType n_col,               /* number of columns of A */ | 
|  | RowStructure<IndexType> Row[], /* of size n_row+1 */ | 
|  | ColStructure<IndexType> Col[], /* of size n_col+1 */ | 
|  | IndexType A[],                 /* row indices of A, of size Alen */ | 
|  | IndexType p[],                 /* pointers to columns in A, of size n_col+1 */ | 
|  | IndexType stats[NStats]        /* colamd statistics */ | 
|  | ) { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType col;      /* a column index */ | 
|  | IndexType row;      /* a row index */ | 
|  | IndexType *cp;      /* a column pointer */ | 
|  | IndexType *cp_end;  /* a pointer to the end of a column */ | 
|  | IndexType *rp;      /* a row pointer */ | 
|  | IndexType *rp_end;  /* a pointer to the end of a row */ | 
|  | IndexType last_row; /* previous row */ | 
|  |  | 
|  | /* === Initialize columns, and check column pointers ==================== */ | 
|  |  | 
|  | for (col = 0; col < n_col; col++) { | 
|  | Col[col].start = p[col]; | 
|  | Col[col].length = p[col + 1] - p[col]; | 
|  |  | 
|  | if ((Col[col].length) < 0)  // extra parentheses to work-around gcc bug 10200 | 
|  | { | 
|  | /* column pointers must be non-decreasing */ | 
|  | stats[Colamd::Status] = Colamd::ErrorColLengthNegative; | 
|  | stats[Colamd::Info1] = col; | 
|  | stats[Colamd::Info2] = Col[col].length; | 
|  | COLAMD_DEBUG0(("colamd: col %d length %d < 0\n", col, Col[col].length)); | 
|  | return (false); | 
|  | } | 
|  |  | 
|  | Col[col].shared1.thickness = 1; | 
|  | Col[col].shared2.score = 0; | 
|  | Col[col].shared3.prev = Empty; | 
|  | Col[col].shared4.degree_next = Empty; | 
|  | } | 
|  |  | 
|  | /* p [0..n_col] no longer needed, used as "head" in subsequent routines */ | 
|  |  | 
|  | /* === Scan columns, compute row degrees, and check row indices ========= */ | 
|  |  | 
|  | stats[Info3] = 0; /* number of duplicate or unsorted row indices*/ | 
|  |  | 
|  | for (row = 0; row < n_row; row++) { | 
|  | Row[row].length = 0; | 
|  | Row[row].shared2.mark = -1; | 
|  | } | 
|  |  | 
|  | for (col = 0; col < n_col; col++) { | 
|  | last_row = -1; | 
|  |  | 
|  | cp = &A[p[col]]; | 
|  | cp_end = &A[p[col + 1]]; | 
|  |  | 
|  | while (cp < cp_end) { | 
|  | row = *cp++; | 
|  |  | 
|  | /* make sure row indices within range */ | 
|  | if (row < 0 || row >= n_row) { | 
|  | stats[Colamd::Status] = Colamd::ErrorRowIndexOutOfBounds; | 
|  | stats[Colamd::Info1] = col; | 
|  | stats[Colamd::Info2] = row; | 
|  | stats[Colamd::Info3] = n_row; | 
|  | COLAMD_DEBUG0(("colamd: row %d col %d out of bounds\n", row, col)); | 
|  | return (false); | 
|  | } | 
|  |  | 
|  | if (row <= last_row || Row[row].shared2.mark == col) { | 
|  | /* row index are unsorted or repeated (or both), thus col */ | 
|  | /* is jumbled.  This is a notice, not an error condition. */ | 
|  | stats[Colamd::Status] = Colamd::OkButJumbled; | 
|  | stats[Colamd::Info1] = col; | 
|  | stats[Colamd::Info2] = row; | 
|  | (stats[Colamd::Info3])++; | 
|  | COLAMD_DEBUG1(("colamd: row %d col %d unsorted/duplicate\n", row, col)); | 
|  | } | 
|  |  | 
|  | if (Row[row].shared2.mark != col) { | 
|  | Row[row].length++; | 
|  | } else { | 
|  | /* this is a repeated entry in the column, */ | 
|  | /* it will be removed */ | 
|  | Col[col].length--; | 
|  | } | 
|  |  | 
|  | /* mark the row as having been seen in this column */ | 
|  | Row[row].shared2.mark = col; | 
|  |  | 
|  | last_row = row; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Compute row pointers ============================================= */ | 
|  |  | 
|  | /* row form of the matrix starts directly after the column */ | 
|  | /* form of matrix in A */ | 
|  | Row[0].start = p[n_col]; | 
|  | Row[0].shared1.p = Row[0].start; | 
|  | Row[0].shared2.mark = -1; | 
|  | for (row = 1; row < n_row; row++) { | 
|  | Row[row].start = Row[row - 1].start + Row[row - 1].length; | 
|  | Row[row].shared1.p = Row[row].start; | 
|  | Row[row].shared2.mark = -1; | 
|  | } | 
|  |  | 
|  | /* === Create row form ================================================== */ | 
|  |  | 
|  | if (stats[Status] == OkButJumbled) { | 
|  | /* if cols jumbled, watch for repeated row indices */ | 
|  | for (col = 0; col < n_col; col++) { | 
|  | cp = &A[p[col]]; | 
|  | cp_end = &A[p[col + 1]]; | 
|  | while (cp < cp_end) { | 
|  | row = *cp++; | 
|  | if (Row[row].shared2.mark != col) { | 
|  | A[(Row[row].shared1.p)++] = col; | 
|  | Row[row].shared2.mark = col; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* if cols not jumbled, we don't need the mark (this is faster) */ | 
|  | for (col = 0; col < n_col; col++) { | 
|  | cp = &A[p[col]]; | 
|  | cp_end = &A[p[col + 1]]; | 
|  | while (cp < cp_end) { | 
|  | A[(Row[*cp++].shared1.p)++] = col; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Clear the row marks and set row degrees ========================== */ | 
|  |  | 
|  | for (row = 0; row < n_row; row++) { | 
|  | Row[row].shared2.mark = 0; | 
|  | Row[row].shared1.degree = Row[row].length; | 
|  | } | 
|  |  | 
|  | /* === See if we need to re-create columns ============================== */ | 
|  |  | 
|  | if (stats[Status] == OkButJumbled) { | 
|  | COLAMD_DEBUG0(("colamd: reconstructing column form, matrix jumbled\n")); | 
|  |  | 
|  | /* === Compute col pointers ========================================= */ | 
|  |  | 
|  | /* col form of the matrix starts at A [0]. */ | 
|  | /* Note, we may have a gap between the col form and the row */ | 
|  | /* form if there were duplicate entries, if so, it will be */ | 
|  | /* removed upon the first garbage collection */ | 
|  | Col[0].start = 0; | 
|  | p[0] = Col[0].start; | 
|  | for (col = 1; col < n_col; col++) { | 
|  | /* note that the lengths here are for pruned columns, i.e. */ | 
|  | /* no duplicate row indices will exist for these columns */ | 
|  | Col[col].start = Col[col - 1].start + Col[col - 1].length; | 
|  | p[col] = Col[col].start; | 
|  | } | 
|  |  | 
|  | /* === Re-create col form =========================================== */ | 
|  |  | 
|  | for (row = 0; row < n_row; row++) { | 
|  | rp = &A[Row[row].start]; | 
|  | rp_end = rp + Row[row].length; | 
|  | while (rp < rp_end) { | 
|  | A[(p[*rp++])++] = row; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Done.  Matrix is not (or no longer) jumbled ====================== */ | 
|  |  | 
|  | return (true); | 
|  | } | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === init_scoring ========================================================= */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Kills dense or empty columns and rows, calculates an initial score for | 
|  | each column, and places all columns in the degree lists.  Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static void init_scoring( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_row,               /* number of rows of A */ | 
|  | IndexType n_col,               /* number of columns of A */ | 
|  | RowStructure<IndexType> Row[], /* of size n_row+1 */ | 
|  | ColStructure<IndexType> Col[], /* of size n_col+1 */ | 
|  | IndexType A[],                 /* column form and row form of A */ | 
|  | IndexType head[],              /* of size n_col+1 */ | 
|  | double knobs[NKnobs],          /* parameters */ | 
|  | IndexType *p_n_row2,           /* number of non-dense, non-empty rows */ | 
|  | IndexType *p_n_col2,           /* number of non-dense, non-empty columns */ | 
|  | IndexType *p_max_deg           /* maximum row degree */ | 
|  | ) { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType c;               /* a column index */ | 
|  | IndexType r, row;          /* a row index */ | 
|  | IndexType *cp;             /* a column pointer */ | 
|  | IndexType deg;             /* degree of a row or column */ | 
|  | IndexType *cp_end;         /* a pointer to the end of a column */ | 
|  | IndexType *new_cp;         /* new column pointer */ | 
|  | IndexType col_length;      /* length of pruned column */ | 
|  | IndexType score;           /* current column score */ | 
|  | IndexType n_col2;          /* number of non-dense, non-empty columns */ | 
|  | IndexType n_row2;          /* number of non-dense, non-empty rows */ | 
|  | IndexType dense_row_count; /* remove rows with more entries than this */ | 
|  | IndexType dense_col_count; /* remove cols with more entries than this */ | 
|  | IndexType min_score;       /* smallest column score */ | 
|  | IndexType max_deg;         /* maximum row degree */ | 
|  | IndexType next_col;        /* Used to add to degree list.*/ | 
|  |  | 
|  | /* === Extract knobs ==================================================== */ | 
|  |  | 
|  | dense_row_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs[Colamd::DenseRow] * n_col), n_col)); | 
|  | dense_col_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs[Colamd::DenseCol] * n_row), n_row)); | 
|  | COLAMD_DEBUG1(("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)); | 
|  | max_deg = 0; | 
|  | n_col2 = n_col; | 
|  | n_row2 = n_row; | 
|  |  | 
|  | /* === Kill empty columns =============================================== */ | 
|  |  | 
|  | /* Put the empty columns at the end in their natural order, so that LU */ | 
|  | /* factorization can proceed as far as possible. */ | 
|  | for (c = n_col - 1; c >= 0; c--) { | 
|  | deg = Col[c].length; | 
|  | if (deg == 0) { | 
|  | /* this is a empty column, kill and order it last */ | 
|  | Col[c].shared2.order = --n_col2; | 
|  | Col[c].kill_principal(); | 
|  | } | 
|  | } | 
|  | COLAMD_DEBUG1(("colamd: null columns killed: %d\n", n_col - n_col2)); | 
|  |  | 
|  | /* === Kill dense columns =============================================== */ | 
|  |  | 
|  | /* Put the dense columns at the end, in their natural order */ | 
|  | for (c = n_col - 1; c >= 0; c--) { | 
|  | /* skip any dead columns */ | 
|  | if (Col[c].is_dead()) { | 
|  | continue; | 
|  | } | 
|  | deg = Col[c].length; | 
|  | if (deg > dense_col_count) { | 
|  | /* this is a dense column, kill and order it last */ | 
|  | Col[c].shared2.order = --n_col2; | 
|  | /* decrement the row degrees */ | 
|  | cp = &A[Col[c].start]; | 
|  | cp_end = cp + Col[c].length; | 
|  | while (cp < cp_end) { | 
|  | Row[*cp++].shared1.degree--; | 
|  | } | 
|  | Col[c].kill_principal(); | 
|  | } | 
|  | } | 
|  | COLAMD_DEBUG1(("colamd: Dense and null columns killed: %d\n", n_col - n_col2)); | 
|  |  | 
|  | /* === Kill dense and empty rows ======================================== */ | 
|  |  | 
|  | for (r = 0; r < n_row; r++) { | 
|  | deg = Row[r].shared1.degree; | 
|  | COLAMD_ASSERT(deg >= 0 && deg <= n_col); | 
|  | if (deg > dense_row_count || deg == 0) { | 
|  | /* kill a dense or empty row */ | 
|  | Row[r].kill(); | 
|  | --n_row2; | 
|  | } else { | 
|  | /* keep track of max degree of remaining rows */ | 
|  | max_deg = numext::maxi(max_deg, deg); | 
|  | } | 
|  | } | 
|  | COLAMD_DEBUG1(("colamd: Dense and null rows killed: %d\n", n_row - n_row2)); | 
|  |  | 
|  | /* === Compute initial column scores ==================================== */ | 
|  |  | 
|  | /* At this point the row degrees are accurate.  They reflect the number */ | 
|  | /* of "live" (non-dense) columns in each row.  No empty rows exist. */ | 
|  | /* Some "live" columns may contain only dead rows, however.  These are */ | 
|  | /* pruned in the code below. */ | 
|  |  | 
|  | /* now find the initial matlab score for each column */ | 
|  | for (c = n_col - 1; c >= 0; c--) { | 
|  | /* skip dead column */ | 
|  | if (Col[c].is_dead()) { | 
|  | continue; | 
|  | } | 
|  | score = 0; | 
|  | cp = &A[Col[c].start]; | 
|  | new_cp = cp; | 
|  | cp_end = cp + Col[c].length; | 
|  | while (cp < cp_end) { | 
|  | /* get a row */ | 
|  | row = *cp++; | 
|  | /* skip if dead */ | 
|  | if (Row[row].is_dead()) { | 
|  | continue; | 
|  | } | 
|  | /* compact the column */ | 
|  | *new_cp++ = row; | 
|  | /* add row's external degree */ | 
|  | score += Row[row].shared1.degree - 1; | 
|  | /* guard against integer overflow */ | 
|  | score = numext::mini(score, n_col); | 
|  | } | 
|  | /* determine pruned column length */ | 
|  | col_length = (IndexType)(new_cp - &A[Col[c].start]); | 
|  | if (col_length == 0) { | 
|  | /* a newly-made null column (all rows in this col are "dense" */ | 
|  | /* and have already been killed) */ | 
|  | COLAMD_DEBUG2(("Newly null killed: %d\n", c)); | 
|  | Col[c].shared2.order = --n_col2; | 
|  | Col[c].kill_principal(); | 
|  | } else { | 
|  | /* set column length and set score */ | 
|  | COLAMD_ASSERT(score >= 0); | 
|  | COLAMD_ASSERT(score <= n_col); | 
|  | Col[c].length = col_length; | 
|  | Col[c].shared2.score = score; | 
|  | } | 
|  | } | 
|  | COLAMD_DEBUG1(("colamd: Dense, null, and newly-null columns killed: %d\n", n_col - n_col2)); | 
|  |  | 
|  | /* At this point, all empty rows and columns are dead.  All live columns */ | 
|  | /* are "clean" (containing no dead rows) and simplicial (no supercolumns */ | 
|  | /* yet).  Rows may contain dead columns, but all live rows contain at */ | 
|  | /* least one live column. */ | 
|  |  | 
|  | /* === Initialize degree lists ========================================== */ | 
|  |  | 
|  | /* clear the hash buckets */ | 
|  | for (c = 0; c <= n_col; c++) { | 
|  | head[c] = Empty; | 
|  | } | 
|  | min_score = n_col; | 
|  | /* place in reverse order, so low column indices are at the front */ | 
|  | /* of the lists.  This is to encourage natural tie-breaking */ | 
|  | for (c = n_col - 1; c >= 0; c--) { | 
|  | /* only add principal columns to degree lists */ | 
|  | if (Col[c].is_alive()) { | 
|  | COLAMD_DEBUG4(("place %d score %d minscore %d ncol %d\n", c, Col[c].shared2.score, min_score, n_col)); | 
|  |  | 
|  | /* === Add columns score to DList =============================== */ | 
|  |  | 
|  | score = Col[c].shared2.score; | 
|  |  | 
|  | COLAMD_ASSERT(min_score >= 0); | 
|  | COLAMD_ASSERT(min_score <= n_col); | 
|  | COLAMD_ASSERT(score >= 0); | 
|  | COLAMD_ASSERT(score <= n_col); | 
|  | COLAMD_ASSERT(head[score] >= Empty); | 
|  |  | 
|  | /* now add this column to dList at proper score location */ | 
|  | next_col = head[score]; | 
|  | Col[c].shared3.prev = Empty; | 
|  | Col[c].shared4.degree_next = next_col; | 
|  |  | 
|  | /* if there already was a column with the same score, set its */ | 
|  | /* previous pointer to this new column */ | 
|  | if (next_col != Empty) { | 
|  | Col[next_col].shared3.prev = c; | 
|  | } | 
|  | head[score] = c; | 
|  |  | 
|  | /* see if this score is less than current min */ | 
|  | min_score = numext::mini(min_score, score); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Return number of remaining columns, and max row degree =========== */ | 
|  |  | 
|  | *p_n_col2 = n_col2; | 
|  | *p_n_row2 = n_row2; | 
|  | *p_max_deg = max_deg; | 
|  | } | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === find_ordering ======================================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Order the principal columns of the supercolumn form of the matrix | 
|  | (no supercolumns on input).  Uses a minimum approximate column minimum | 
|  | degree ordering method.  Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static IndexType find_ordering /* return the number of garbage collections */ | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_row,               /* number of rows of A */ | 
|  | IndexType n_col,               /* number of columns of A */ | 
|  | IndexType Alen,                /* size of A, 2*nnz + n_col or larger */ | 
|  | RowStructure<IndexType> Row[], /* of size n_row+1 */ | 
|  | ColStructure<IndexType> Col[], /* of size n_col+1 */ | 
|  | IndexType A[],                 /* column form and row form of A */ | 
|  | IndexType head[],              /* of size n_col+1 */ | 
|  | IndexType n_col2,              /* Remaining columns to order */ | 
|  | IndexType max_deg,             /* Maximum row degree */ | 
|  | IndexType pfree                /* index of first free slot (2*nnz on entry) */ | 
|  | ) { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType k;                   /* current pivot ordering step */ | 
|  | IndexType pivot_col;           /* current pivot column */ | 
|  | IndexType *cp;                 /* a column pointer */ | 
|  | IndexType *rp;                 /* a row pointer */ | 
|  | IndexType pivot_row;           /* current pivot row */ | 
|  | IndexType *new_cp;             /* modified column pointer */ | 
|  | IndexType *new_rp;             /* modified row pointer */ | 
|  | IndexType pivot_row_start;     /* pointer to start of pivot row */ | 
|  | IndexType pivot_row_degree;    /* number of columns in pivot row */ | 
|  | IndexType pivot_row_length;    /* number of supercolumns in pivot row */ | 
|  | IndexType pivot_col_score;     /* score of pivot column */ | 
|  | IndexType needed_memory;       /* free space needed for pivot row */ | 
|  | IndexType *cp_end;             /* pointer to the end of a column */ | 
|  | IndexType *rp_end;             /* pointer to the end of a row */ | 
|  | IndexType row;                 /* a row index */ | 
|  | IndexType col;                 /* a column index */ | 
|  | IndexType max_score;           /* maximum possible score */ | 
|  | IndexType cur_score;           /* score of current column */ | 
|  | unsigned int hash;             /* hash value for supernode detection */ | 
|  | IndexType head_column;         /* head of hash bucket */ | 
|  | IndexType first_col;           /* first column in hash bucket */ | 
|  | IndexType tag_mark;            /* marker value for mark array */ | 
|  | IndexType row_mark;            /* Row [row].shared2.mark */ | 
|  | IndexType set_difference;      /* set difference size of row with pivot row */ | 
|  | IndexType min_score;           /* smallest column score */ | 
|  | IndexType col_thickness;       /* "thickness" (no. of columns in a supercol) */ | 
|  | IndexType max_mark;            /* maximum value of tag_mark */ | 
|  | IndexType pivot_col_thickness; /* number of columns represented by pivot col */ | 
|  | IndexType prev_col;            /* Used by Dlist operations. */ | 
|  | IndexType next_col;            /* Used by Dlist operations. */ | 
|  | IndexType ngarbage;            /* number of garbage collections performed */ | 
|  |  | 
|  | /* === Initialization and clear mark ==================================== */ | 
|  |  | 
|  | max_mark = INT_MAX - n_col; /* INT_MAX defined in <limits.h> */ | 
|  | tag_mark = Colamd::clear_mark(n_row, Row); | 
|  | min_score = 0; | 
|  | ngarbage = 0; | 
|  | COLAMD_DEBUG1(("colamd: Ordering, n_col2=%d\n", n_col2)); | 
|  |  | 
|  | /* === Order the columns ================================================ */ | 
|  |  | 
|  | for (k = 0; k < n_col2; /* 'k' is incremented below */) { | 
|  | /* === Select pivot column, and order it ============================ */ | 
|  |  | 
|  | /* make sure degree list isn't empty */ | 
|  | COLAMD_ASSERT(min_score >= 0); | 
|  | COLAMD_ASSERT(min_score <= n_col); | 
|  | COLAMD_ASSERT(head[min_score] >= Empty); | 
|  |  | 
|  | /* get pivot column from head of minimum degree list */ | 
|  | while (min_score < n_col && head[min_score] == Empty) { | 
|  | min_score++; | 
|  | } | 
|  | pivot_col = head[min_score]; | 
|  | COLAMD_ASSERT(pivot_col >= 0 && pivot_col <= n_col); | 
|  | next_col = Col[pivot_col].shared4.degree_next; | 
|  | head[min_score] = next_col; | 
|  | if (next_col != Empty) { | 
|  | Col[next_col].shared3.prev = Empty; | 
|  | } | 
|  |  | 
|  | COLAMD_ASSERT(Col[pivot_col].is_alive()); | 
|  | COLAMD_DEBUG3(("Pivot col: %d\n", pivot_col)); | 
|  |  | 
|  | /* remember score for defrag check */ | 
|  | pivot_col_score = Col[pivot_col].shared2.score; | 
|  |  | 
|  | /* the pivot column is the kth column in the pivot order */ | 
|  | Col[pivot_col].shared2.order = k; | 
|  |  | 
|  | /* increment order count by column thickness */ | 
|  | pivot_col_thickness = Col[pivot_col].shared1.thickness; | 
|  | k += pivot_col_thickness; | 
|  | COLAMD_ASSERT(pivot_col_thickness > 0); | 
|  |  | 
|  | /* === Garbage_collection, if necessary ============================= */ | 
|  |  | 
|  | needed_memory = numext::mini(pivot_col_score, n_col - k); | 
|  | if (pfree + needed_memory >= Alen) { | 
|  | pfree = Colamd::garbage_collection(n_row, n_col, Row, Col, A, &A[pfree]); | 
|  | ngarbage++; | 
|  | /* after garbage collection we will have enough */ | 
|  | COLAMD_ASSERT(pfree + needed_memory < Alen); | 
|  | /* garbage collection has wiped out the Row[].shared2.mark array */ | 
|  | tag_mark = Colamd::clear_mark(n_row, Row); | 
|  | } | 
|  |  | 
|  | /* === Compute pivot row pattern ==================================== */ | 
|  |  | 
|  | /* get starting location for this new merged row */ | 
|  | pivot_row_start = pfree; | 
|  |  | 
|  | /* initialize new row counts to zero */ | 
|  | pivot_row_degree = 0; | 
|  |  | 
|  | /* tag pivot column as having been visited so it isn't included */ | 
|  | /* in merged pivot row */ | 
|  | Col[pivot_col].shared1.thickness = -pivot_col_thickness; | 
|  |  | 
|  | /* pivot row is the union of all rows in the pivot column pattern */ | 
|  | cp = &A[Col[pivot_col].start]; | 
|  | cp_end = cp + Col[pivot_col].length; | 
|  | while (cp < cp_end) { | 
|  | /* get a row */ | 
|  | row = *cp++; | 
|  | COLAMD_DEBUG4(("Pivot col pattern %d %d\n", Row[row].is_alive(), row)); | 
|  | /* skip if row is dead */ | 
|  | if (Row[row].is_dead()) { | 
|  | continue; | 
|  | } | 
|  | rp = &A[Row[row].start]; | 
|  | rp_end = rp + Row[row].length; | 
|  | while (rp < rp_end) { | 
|  | /* get a column */ | 
|  | col = *rp++; | 
|  | /* add the column, if alive and untagged */ | 
|  | col_thickness = Col[col].shared1.thickness; | 
|  | if (col_thickness > 0 && Col[col].is_alive()) { | 
|  | /* tag column in pivot row */ | 
|  | Col[col].shared1.thickness = -col_thickness; | 
|  | COLAMD_ASSERT(pfree < Alen); | 
|  | /* place column in pivot row */ | 
|  | A[pfree++] = col; | 
|  | pivot_row_degree += col_thickness; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* clear tag on pivot column */ | 
|  | Col[pivot_col].shared1.thickness = pivot_col_thickness; | 
|  | max_deg = numext::maxi(max_deg, pivot_row_degree); | 
|  |  | 
|  | /* === Kill all rows used to construct pivot row ==================== */ | 
|  |  | 
|  | /* also kill pivot row, temporarily */ | 
|  | cp = &A[Col[pivot_col].start]; | 
|  | cp_end = cp + Col[pivot_col].length; | 
|  | while (cp < cp_end) { | 
|  | /* may be killing an already dead row */ | 
|  | row = *cp++; | 
|  | COLAMD_DEBUG3(("Kill row in pivot col: %d\n", row)); | 
|  | Row[row].kill(); | 
|  | } | 
|  |  | 
|  | /* === Select a row index to use as the new pivot row =============== */ | 
|  |  | 
|  | pivot_row_length = pfree - pivot_row_start; | 
|  | if (pivot_row_length > 0) { | 
|  | /* pick the "pivot" row arbitrarily (first row in col) */ | 
|  | pivot_row = A[Col[pivot_col].start]; | 
|  | COLAMD_DEBUG3(("Pivotal row is %d\n", pivot_row)); | 
|  | } else { | 
|  | /* there is no pivot row, since it is of zero length */ | 
|  | pivot_row = Empty; | 
|  | COLAMD_ASSERT(pivot_row_length == 0); | 
|  | } | 
|  | COLAMD_ASSERT(Col[pivot_col].length > 0 || pivot_row_length == 0); | 
|  |  | 
|  | /* === Approximate degree computation =============================== */ | 
|  |  | 
|  | /* Here begins the computation of the approximate degree.  The column */ | 
|  | /* score is the sum of the pivot row "length", plus the size of the */ | 
|  | /* set differences of each row in the column minus the pattern of the */ | 
|  | /* pivot row itself.  The column ("thickness") itself is also */ | 
|  | /* excluded from the column score (we thus use an approximate */ | 
|  | /* external degree). */ | 
|  |  | 
|  | /* The time taken by the following code (compute set differences, and */ | 
|  | /* add them up) is proportional to the size of the data structure */ | 
|  | /* being scanned - that is, the sum of the sizes of each column in */ | 
|  | /* the pivot row.  Thus, the amortized time to compute a column score */ | 
|  | /* is proportional to the size of that column (where size, in this */ | 
|  | /* context, is the column "length", or the number of row indices */ | 
|  | /* in that column).  The number of row indices in a column is */ | 
|  | /* monotonically non-decreasing, from the length of the original */ | 
|  | /* column on input to colamd. */ | 
|  |  | 
|  | /* === Compute set differences ====================================== */ | 
|  |  | 
|  | COLAMD_DEBUG3(("** Computing set differences phase. **\n")); | 
|  |  | 
|  | /* pivot row is currently dead - it will be revived later. */ | 
|  |  | 
|  | COLAMD_DEBUG3(("Pivot row: ")); | 
|  | /* for each column in pivot row */ | 
|  | rp = &A[pivot_row_start]; | 
|  | rp_end = rp + pivot_row_length; | 
|  | while (rp < rp_end) { | 
|  | col = *rp++; | 
|  | COLAMD_ASSERT(Col[col].is_alive() && col != pivot_col); | 
|  | COLAMD_DEBUG3(("Col: %d\n", col)); | 
|  |  | 
|  | /* clear tags used to construct pivot row pattern */ | 
|  | col_thickness = -Col[col].shared1.thickness; | 
|  | COLAMD_ASSERT(col_thickness > 0); | 
|  | Col[col].shared1.thickness = col_thickness; | 
|  |  | 
|  | /* === Remove column from degree list =========================== */ | 
|  |  | 
|  | cur_score = Col[col].shared2.score; | 
|  | prev_col = Col[col].shared3.prev; | 
|  | next_col = Col[col].shared4.degree_next; | 
|  | COLAMD_ASSERT(cur_score >= 0); | 
|  | COLAMD_ASSERT(cur_score <= n_col); | 
|  | COLAMD_ASSERT(cur_score >= Empty); | 
|  | if (prev_col == Empty) { | 
|  | head[cur_score] = next_col; | 
|  | } else { | 
|  | Col[prev_col].shared4.degree_next = next_col; | 
|  | } | 
|  | if (next_col != Empty) { | 
|  | Col[next_col].shared3.prev = prev_col; | 
|  | } | 
|  |  | 
|  | /* === Scan the column ========================================== */ | 
|  |  | 
|  | cp = &A[Col[col].start]; | 
|  | cp_end = cp + Col[col].length; | 
|  | while (cp < cp_end) { | 
|  | /* get a row */ | 
|  | row = *cp++; | 
|  | /* skip if dead */ | 
|  | if (Row[row].is_dead()) { | 
|  | continue; | 
|  | } | 
|  | row_mark = Row[row].shared2.mark; | 
|  | COLAMD_ASSERT(row != pivot_row); | 
|  | set_difference = row_mark - tag_mark; | 
|  | /* check if the row has been seen yet */ | 
|  | if (set_difference < 0) { | 
|  | COLAMD_ASSERT(Row[row].shared1.degree <= max_deg); | 
|  | set_difference = Row[row].shared1.degree; | 
|  | } | 
|  | /* subtract column thickness from this row's set difference */ | 
|  | set_difference -= col_thickness; | 
|  | COLAMD_ASSERT(set_difference >= 0); | 
|  | /* absorb this row if the set difference becomes zero */ | 
|  | if (set_difference == 0) { | 
|  | COLAMD_DEBUG3(("aggressive absorption. Row: %d\n", row)); | 
|  | Row[row].kill(); | 
|  | } else { | 
|  | /* save the new mark */ | 
|  | Row[row].shared2.mark = set_difference + tag_mark; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Add up set differences for each column ======================= */ | 
|  |  | 
|  | COLAMD_DEBUG3(("** Adding set differences phase. **\n")); | 
|  |  | 
|  | /* for each column in pivot row */ | 
|  | rp = &A[pivot_row_start]; | 
|  | rp_end = rp + pivot_row_length; | 
|  | while (rp < rp_end) { | 
|  | /* get a column */ | 
|  | col = *rp++; | 
|  | COLAMD_ASSERT(Col[col].is_alive() && col != pivot_col); | 
|  | hash = 0; | 
|  | cur_score = 0; | 
|  | cp = &A[Col[col].start]; | 
|  | /* compact the column */ | 
|  | new_cp = cp; | 
|  | cp_end = cp + Col[col].length; | 
|  |  | 
|  | COLAMD_DEBUG4(("Adding set diffs for Col: %d.\n", col)); | 
|  |  | 
|  | while (cp < cp_end) { | 
|  | /* get a row */ | 
|  | row = *cp++; | 
|  | COLAMD_ASSERT(row >= 0 && row < n_row); | 
|  | /* skip if dead */ | 
|  | if (Row[row].is_dead()) { | 
|  | continue; | 
|  | } | 
|  | row_mark = Row[row].shared2.mark; | 
|  | COLAMD_ASSERT(row_mark > tag_mark); | 
|  | /* compact the column */ | 
|  | *new_cp++ = row; | 
|  | /* compute hash function */ | 
|  | hash += row; | 
|  | /* add set difference */ | 
|  | cur_score += row_mark - tag_mark; | 
|  | /* integer overflow... */ | 
|  | cur_score = numext::mini(cur_score, n_col); | 
|  | } | 
|  |  | 
|  | /* recompute the column's length */ | 
|  | Col[col].length = (IndexType)(new_cp - &A[Col[col].start]); | 
|  |  | 
|  | /* === Further mass elimination ================================= */ | 
|  |  | 
|  | if (Col[col].length == 0) { | 
|  | COLAMD_DEBUG4(("further mass elimination. Col: %d\n", col)); | 
|  | /* nothing left but the pivot row in this column */ | 
|  | Col[col].kill_principal(); | 
|  | pivot_row_degree -= Col[col].shared1.thickness; | 
|  | COLAMD_ASSERT(pivot_row_degree >= 0); | 
|  | /* order it */ | 
|  | Col[col].shared2.order = k; | 
|  | /* increment order count by column thickness */ | 
|  | k += Col[col].shared1.thickness; | 
|  | } else { | 
|  | /* === Prepare for supercolumn detection ==================== */ | 
|  |  | 
|  | COLAMD_DEBUG4(("Preparing supercol detection for Col: %d.\n", col)); | 
|  |  | 
|  | /* save score so far */ | 
|  | Col[col].shared2.score = cur_score; | 
|  |  | 
|  | /* add column to hash table, for supercolumn detection */ | 
|  | hash %= n_col + 1; | 
|  |  | 
|  | COLAMD_DEBUG4((" Hash = %d, n_col = %d.\n", hash, n_col)); | 
|  | COLAMD_ASSERT(hash <= n_col); | 
|  |  | 
|  | head_column = head[hash]; | 
|  | if (head_column > Empty) { | 
|  | /* degree list "hash" is non-empty, use prev (shared3) of */ | 
|  | /* first column in degree list as head of hash bucket */ | 
|  | first_col = Col[head_column].shared3.headhash; | 
|  | Col[head_column].shared3.headhash = col; | 
|  | } else { | 
|  | /* degree list "hash" is empty, use head as hash bucket */ | 
|  | first_col = -(head_column + 2); | 
|  | head[hash] = -(col + 2); | 
|  | } | 
|  | Col[col].shared4.hash_next = first_col; | 
|  |  | 
|  | /* save hash function in Col [col].shared3.hash */ | 
|  | Col[col].shared3.hash = (IndexType)hash; | 
|  | COLAMD_ASSERT(Col[col].is_alive()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The approximate external column degree is now computed.  */ | 
|  |  | 
|  | /* === Supercolumn detection ======================================== */ | 
|  |  | 
|  | COLAMD_DEBUG3(("** Supercolumn detection phase. **\n")); | 
|  |  | 
|  | Colamd::detect_super_cols(Col, A, head, pivot_row_start, pivot_row_length); | 
|  |  | 
|  | /* === Kill the pivotal column ====================================== */ | 
|  |  | 
|  | Col[pivot_col].kill_principal(); | 
|  |  | 
|  | /* === Clear mark =================================================== */ | 
|  |  | 
|  | tag_mark += (max_deg + 1); | 
|  | if (tag_mark >= max_mark) { | 
|  | COLAMD_DEBUG2(("clearing tag_mark\n")); | 
|  | tag_mark = Colamd::clear_mark(n_row, Row); | 
|  | } | 
|  |  | 
|  | /* === Finalize the new pivot row, and column scores ================ */ | 
|  |  | 
|  | COLAMD_DEBUG3(("** Finalize scores phase. **\n")); | 
|  |  | 
|  | /* for each column in pivot row */ | 
|  | rp = &A[pivot_row_start]; | 
|  | /* compact the pivot row */ | 
|  | new_rp = rp; | 
|  | rp_end = rp + pivot_row_length; | 
|  | while (rp < rp_end) { | 
|  | col = *rp++; | 
|  | /* skip dead columns */ | 
|  | if (Col[col].is_dead()) { | 
|  | continue; | 
|  | } | 
|  | *new_rp++ = col; | 
|  | /* add new pivot row to column */ | 
|  | A[Col[col].start + (Col[col].length++)] = pivot_row; | 
|  |  | 
|  | /* retrieve score so far and add on pivot row's degree. */ | 
|  | /* (we wait until here for this in case the pivot */ | 
|  | /* row's degree was reduced due to mass elimination). */ | 
|  | cur_score = Col[col].shared2.score + pivot_row_degree; | 
|  |  | 
|  | /* calculate the max possible score as the number of */ | 
|  | /* external columns minus the 'k' value minus the */ | 
|  | /* columns thickness */ | 
|  | max_score = n_col - k - Col[col].shared1.thickness; | 
|  |  | 
|  | /* make the score the external degree of the union-of-rows */ | 
|  | cur_score -= Col[col].shared1.thickness; | 
|  |  | 
|  | /* make sure score is less or equal than the max score */ | 
|  | cur_score = numext::mini(cur_score, max_score); | 
|  | COLAMD_ASSERT(cur_score >= 0); | 
|  |  | 
|  | /* store updated score */ | 
|  | Col[col].shared2.score = cur_score; | 
|  |  | 
|  | /* === Place column back in degree list ========================= */ | 
|  |  | 
|  | COLAMD_ASSERT(min_score >= 0); | 
|  | COLAMD_ASSERT(min_score <= n_col); | 
|  | COLAMD_ASSERT(cur_score >= 0); | 
|  | COLAMD_ASSERT(cur_score <= n_col); | 
|  | COLAMD_ASSERT(head[cur_score] >= Empty); | 
|  | next_col = head[cur_score]; | 
|  | Col[col].shared4.degree_next = next_col; | 
|  | Col[col].shared3.prev = Empty; | 
|  | if (next_col != Empty) { | 
|  | Col[next_col].shared3.prev = col; | 
|  | } | 
|  | head[cur_score] = col; | 
|  |  | 
|  | /* see if this score is less than current min */ | 
|  | min_score = numext::mini(min_score, cur_score); | 
|  | } | 
|  |  | 
|  | /* === Resurrect the new pivot row ================================== */ | 
|  |  | 
|  | if (pivot_row_degree > 0) { | 
|  | /* update pivot row length to reflect any cols that were killed */ | 
|  | /* during super-col detection and mass elimination */ | 
|  | Row[pivot_row].start = pivot_row_start; | 
|  | Row[pivot_row].length = (IndexType)(new_rp - &A[pivot_row_start]); | 
|  | Row[pivot_row].shared1.degree = pivot_row_degree; | 
|  | Row[pivot_row].shared2.mark = 0; | 
|  | /* pivot row is no longer dead */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === All principal columns have now been ordered ====================== */ | 
|  |  | 
|  | return (ngarbage); | 
|  | } | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === order_children ======================================================= */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | The find_ordering routine has ordered all of the principal columns (the | 
|  | representatives of the supercolumns).  The non-principal columns have not | 
|  | yet been ordered.  This routine orders those columns by walking up the | 
|  | parent tree (a column is a child of the column which absorbed it).  The | 
|  | final permutation vector is then placed in p [0 ... n_col-1], with p [0] | 
|  | being the first column, and p [n_col-1] being the last.  It doesn't look | 
|  | like it at first glance, but be assured that this routine takes time linear | 
|  | in the number of columns.  Although not immediately obvious, the time | 
|  | taken by this routine is O (n_col), that is, linear in the number of | 
|  | columns.  Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static inline void order_children( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_col,               /* number of columns of A */ | 
|  | ColStructure<IndexType> Col[], /* of size n_col+1 */ | 
|  | IndexType p[]                  /* p [0 ... n_col-1] is the column permutation*/ | 
|  | ) { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType i;      /* loop counter for all columns */ | 
|  | IndexType c;      /* column index */ | 
|  | IndexType parent; /* index of column's parent */ | 
|  | IndexType order;  /* column's order */ | 
|  |  | 
|  | /* === Order each non-principal column ================================== */ | 
|  |  | 
|  | for (i = 0; i < n_col; i++) { | 
|  | /* find an un-ordered non-principal column */ | 
|  | COLAMD_ASSERT(col_is_dead(Col, i)); | 
|  | if (!Col[i].is_dead_principal() && Col[i].shared2.order == Empty) { | 
|  | parent = i; | 
|  | /* once found, find its principal parent */ | 
|  | do { | 
|  | parent = Col[parent].shared1.parent; | 
|  | } while (!Col[parent].is_dead_principal()); | 
|  |  | 
|  | /* now, order all un-ordered non-principal columns along path */ | 
|  | /* to this parent.  collapse tree at the same time */ | 
|  | c = i; | 
|  | /* get order of parent */ | 
|  | order = Col[parent].shared2.order; | 
|  |  | 
|  | do { | 
|  | COLAMD_ASSERT(Col[c].shared2.order == Empty); | 
|  |  | 
|  | /* order this column */ | 
|  | Col[c].shared2.order = order++; | 
|  | /* collaps tree */ | 
|  | Col[c].shared1.parent = parent; | 
|  |  | 
|  | /* get immediate parent of this column */ | 
|  | c = Col[c].shared1.parent; | 
|  |  | 
|  | /* continue until we hit an ordered column.  There are */ | 
|  | /* guaranteed not to be anymore unordered columns */ | 
|  | /* above an ordered column */ | 
|  | } while (Col[c].shared2.order == Empty); | 
|  |  | 
|  | /* re-order the super_col parent to largest order for this group */ | 
|  | Col[parent].shared2.order = order; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Generate the permutation ========================================= */ | 
|  |  | 
|  | for (c = 0; c < n_col; c++) { | 
|  | p[Col[c].shared2.order] = c; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === detect_super_cols ==================================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Detects supercolumns by finding matches between columns in the hash buckets. | 
|  | Check amongst columns in the set A [row_start ... row_start + row_length-1]. | 
|  | The columns under consideration are currently *not* in the degree lists, | 
|  | and have already been placed in the hash buckets. | 
|  |  | 
|  | The hash bucket for columns whose hash function is equal to h is stored | 
|  | as follows: | 
|  |  | 
|  | if head [h] is >= 0, then head [h] contains a degree list, so: | 
|  |  | 
|  | head [h] is the first column in degree bucket h. | 
|  | Col [head [h]].headhash gives the first column in hash bucket h. | 
|  |  | 
|  | otherwise, the degree list is empty, and: | 
|  |  | 
|  | -(head [h] + 2) is the first column in hash bucket h. | 
|  |  | 
|  | For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous | 
|  | column" pointer.  Col [c].shared3.hash is used instead as the hash number | 
|  | for that column.  The value of Col [c].shared4.hash_next is the next column | 
|  | in the same hash bucket. | 
|  |  | 
|  | Assuming no, or "few" hash collisions, the time taken by this routine is | 
|  | linear in the sum of the sizes (lengths) of each column whose score has | 
|  | just been computed in the approximate degree computation. | 
|  | Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static void detect_super_cols( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | ColStructure<IndexType> Col[], /* of size n_col+1 */ | 
|  | IndexType A[],                 /* row indices of A */ | 
|  | IndexType head[],              /* head of degree lists and hash buckets */ | 
|  | IndexType row_start,           /* pointer to set of columns to check */ | 
|  | IndexType row_length           /* number of columns to check */ | 
|  | ) { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType hash;        /* hash value for a column */ | 
|  | IndexType *rp;         /* pointer to a row */ | 
|  | IndexType c;           /* a column index */ | 
|  | IndexType super_c;     /* column index of the column to absorb into */ | 
|  | IndexType *cp1;        /* column pointer for column super_c */ | 
|  | IndexType *cp2;        /* column pointer for column c */ | 
|  | IndexType length;      /* length of column super_c */ | 
|  | IndexType prev_c;      /* column preceding c in hash bucket */ | 
|  | IndexType i;           /* loop counter */ | 
|  | IndexType *rp_end;     /* pointer to the end of the row */ | 
|  | IndexType col;         /* a column index in the row to check */ | 
|  | IndexType head_column; /* first column in hash bucket or degree list */ | 
|  | IndexType first_col;   /* first column in hash bucket */ | 
|  |  | 
|  | /* === Consider each column in the row ================================== */ | 
|  |  | 
|  | rp = &A[row_start]; | 
|  | rp_end = rp + row_length; | 
|  | while (rp < rp_end) { | 
|  | col = *rp++; | 
|  | if (Col[col].is_dead()) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* get hash number for this column */ | 
|  | hash = Col[col].shared3.hash; | 
|  | COLAMD_ASSERT(hash <= n_col); | 
|  |  | 
|  | /* === Get the first column in this hash bucket ===================== */ | 
|  |  | 
|  | head_column = head[hash]; | 
|  | if (head_column > Empty) { | 
|  | first_col = Col[head_column].shared3.headhash; | 
|  | } else { | 
|  | first_col = -(head_column + 2); | 
|  | } | 
|  |  | 
|  | /* === Consider each column in the hash bucket ====================== */ | 
|  |  | 
|  | for (super_c = first_col; super_c != Empty; super_c = Col[super_c].shared4.hash_next) { | 
|  | COLAMD_ASSERT(Col[super_c].is_alive()); | 
|  | COLAMD_ASSERT(Col[super_c].shared3.hash == hash); | 
|  | length = Col[super_c].length; | 
|  |  | 
|  | /* prev_c is the column preceding column c in the hash bucket */ | 
|  | prev_c = super_c; | 
|  |  | 
|  | /* === Compare super_c with all columns after it ================ */ | 
|  |  | 
|  | for (c = Col[super_c].shared4.hash_next; c != Empty; c = Col[c].shared4.hash_next) { | 
|  | COLAMD_ASSERT(c != super_c); | 
|  | COLAMD_ASSERT(Col[c].is_alive()); | 
|  | COLAMD_ASSERT(Col[c].shared3.hash == hash); | 
|  |  | 
|  | /* not identical if lengths or scores are different */ | 
|  | if (Col[c].length != length || Col[c].shared2.score != Col[super_c].shared2.score) { | 
|  | prev_c = c; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* compare the two columns */ | 
|  | cp1 = &A[Col[super_c].start]; | 
|  | cp2 = &A[Col[c].start]; | 
|  |  | 
|  | for (i = 0; i < length; i++) { | 
|  | /* the columns are "clean" (no dead rows) */ | 
|  | COLAMD_ASSERT(cp1->is_alive()); | 
|  | COLAMD_ASSERT(cp2->is_alive()); | 
|  | /* row indices will same order for both supercols, */ | 
|  | /* no gather scatter necessary */ | 
|  | if (*cp1++ != *cp2++) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* the two columns are different if the for-loop "broke" */ | 
|  | if (i != length) { | 
|  | prev_c = c; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* === Got it!  two columns are identical =================== */ | 
|  |  | 
|  | COLAMD_ASSERT(Col[c].shared2.score == Col[super_c].shared2.score); | 
|  |  | 
|  | Col[super_c].shared1.thickness += Col[c].shared1.thickness; | 
|  | Col[c].shared1.parent = super_c; | 
|  | Col[c].kill_non_principal(); | 
|  | /* order c later, in order_children() */ | 
|  | Col[c].shared2.order = Empty; | 
|  | /* remove c from hash bucket */ | 
|  | Col[prev_c].shared4.hash_next = Col[c].shared4.hash_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Empty this hash bucket ======================================= */ | 
|  |  | 
|  | if (head_column > Empty) { | 
|  | /* corresponding degree list "hash" is not empty */ | 
|  | Col[head_column].shared3.headhash = Empty; | 
|  | } else { | 
|  | /* corresponding degree list "hash" is empty */ | 
|  | head[hash] = Empty; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === garbage_collection =================================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Defragments and compacts columns and rows in the workspace A.  Used when | 
|  | all available memory has been used while performing row merging.  Returns | 
|  | the index of the first free position in A, after garbage collection.  The | 
|  | time taken by this routine is linear is the size of the array A, which is | 
|  | itself linear in the number of nonzeros in the input matrix. | 
|  | Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static IndexType garbage_collection /* returns the new value of pfree */ | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_row,               /* number of rows */ | 
|  | IndexType n_col,               /* number of columns */ | 
|  | RowStructure<IndexType> Row[], /* row info */ | 
|  | ColStructure<IndexType> Col[], /* column info */ | 
|  | IndexType A[],                 /* A [0 ... Alen-1] holds the matrix */ | 
|  | IndexType *pfree               /* &A [0] ... pfree is in use */ | 
|  | ) { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType *psrc;  /* source pointer */ | 
|  | IndexType *pdest; /* destination pointer */ | 
|  | IndexType j;      /* counter */ | 
|  | IndexType r;      /* a row index */ | 
|  | IndexType c;      /* a column index */ | 
|  | IndexType length; /* length of a row or column */ | 
|  |  | 
|  | /* === Defragment the columns =========================================== */ | 
|  |  | 
|  | pdest = &A[0]; | 
|  | for (c = 0; c < n_col; c++) { | 
|  | if (Col[c].is_alive()) { | 
|  | psrc = &A[Col[c].start]; | 
|  |  | 
|  | /* move and compact the column */ | 
|  | COLAMD_ASSERT(pdest <= psrc); | 
|  | Col[c].start = (IndexType)(pdest - &A[0]); | 
|  | length = Col[c].length; | 
|  | for (j = 0; j < length; j++) { | 
|  | r = *psrc++; | 
|  | if (Row[r].is_alive()) { | 
|  | *pdest++ = r; | 
|  | } | 
|  | } | 
|  | Col[c].length = (IndexType)(pdest - &A[Col[c].start]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Prepare to defragment the rows =================================== */ | 
|  |  | 
|  | for (r = 0; r < n_row; r++) { | 
|  | if (Row[r].is_alive()) { | 
|  | if (Row[r].length == 0) { | 
|  | /* this row is of zero length.  cannot compact it, so kill it */ | 
|  | COLAMD_DEBUG3(("Defrag row kill\n")); | 
|  | Row[r].kill(); | 
|  | } else { | 
|  | /* save first column index in Row [r].shared2.first_column */ | 
|  | psrc = &A[Row[r].start]; | 
|  | Row[r].shared2.first_column = *psrc; | 
|  | COLAMD_ASSERT(Row[r].is_alive()); | 
|  | /* flag the start of the row with the one's complement of row */ | 
|  | *psrc = ones_complement(r); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Defragment the rows ============================================== */ | 
|  |  | 
|  | psrc = pdest; | 
|  | while (psrc < pfree) { | 
|  | /* find a negative number ... the start of a row */ | 
|  | if (*psrc++ < 0) { | 
|  | psrc--; | 
|  | /* get the row index */ | 
|  | r = ones_complement(*psrc); | 
|  | COLAMD_ASSERT(r >= 0 && r < n_row); | 
|  | /* restore first column index */ | 
|  | *psrc = Row[r].shared2.first_column; | 
|  | COLAMD_ASSERT(Row[r].is_alive()); | 
|  |  | 
|  | /* move and compact the row */ | 
|  | COLAMD_ASSERT(pdest <= psrc); | 
|  | Row[r].start = (IndexType)(pdest - &A[0]); | 
|  | length = Row[r].length; | 
|  | for (j = 0; j < length; j++) { | 
|  | c = *psrc++; | 
|  | if (Col[c].is_alive()) { | 
|  | *pdest++ = c; | 
|  | } | 
|  | } | 
|  | Row[r].length = (IndexType)(pdest - &A[Row[r].start]); | 
|  | } | 
|  | } | 
|  | /* ensure we found all the rows */ | 
|  | COLAMD_ASSERT(debug_rows == 0); | 
|  |  | 
|  | /* === Return the new value of pfree ==================================== */ | 
|  |  | 
|  | return ((IndexType)(pdest - &A[0])); | 
|  | } | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === clear_mark =========================================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Clears the Row [].shared2.mark array, and returns the new tag_mark. | 
|  | Return value is the new tag_mark.  Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static inline IndexType clear_mark /* return the new value for tag_mark */ | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_row,              /* number of rows in A */ | 
|  | RowStructure<IndexType> Row[] /* Row [0 ... n_row-1].shared2.mark is set to zero */ | 
|  | ) { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType r; | 
|  |  | 
|  | for (r = 0; r < n_row; r++) { | 
|  | if (Row[r].is_alive()) { | 
|  | Row[r].shared2.mark = 0; | 
|  | } | 
|  | } | 
|  | return (1); | 
|  | } | 
|  |  | 
|  | }  // namespace Colamd | 
|  |  | 
|  | }  // namespace internal | 
|  | #endif |