| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | 
 | // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_SPARSE_QR_H | 
 | #define EIGEN_SPARSE_QR_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | template <typename MatrixType, typename OrderingType> | 
 | class SparseQR; | 
 | template <typename SparseQRType> | 
 | struct SparseQRMatrixQReturnType; | 
 | template <typename SparseQRType> | 
 | struct SparseQRMatrixQTransposeReturnType; | 
 | template <typename SparseQRType, typename Derived> | 
 | struct SparseQR_QProduct; | 
 | namespace internal { | 
 | template <typename SparseQRType> | 
 | struct traits<SparseQRMatrixQReturnType<SparseQRType> > { | 
 |   typedef typename SparseQRType::MatrixType ReturnType; | 
 |   typedef typename ReturnType::StorageIndex StorageIndex; | 
 |   typedef typename ReturnType::StorageKind StorageKind; | 
 |   enum { RowsAtCompileTime = Dynamic, ColsAtCompileTime = Dynamic }; | 
 | }; | 
 | template <typename SparseQRType> | 
 | struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> > { | 
 |   typedef typename SparseQRType::MatrixType ReturnType; | 
 | }; | 
 | template <typename SparseQRType, typename Derived> | 
 | struct traits<SparseQR_QProduct<SparseQRType, Derived> > { | 
 |   typedef typename Derived::PlainObject ReturnType; | 
 | }; | 
 | }  // End namespace internal | 
 |  | 
 | /** | 
 |  * \ingroup SparseQR_Module | 
 |  * \class SparseQR | 
 |  * \brief Sparse left-looking QR factorization with numerical column pivoting | 
 |  * | 
 |  * This class implements a left-looking QR decomposition of sparse matrices | 
 |  * with numerical column pivoting. | 
 |  * When a column has a norm less than a given tolerance | 
 |  * it is implicitly permuted to the end. The QR factorization thus obtained is | 
 |  * given by A*P = Q*R where R is upper triangular or trapezoidal. | 
 |  * | 
 |  * P is the column permutation which is the product of the fill-reducing and the | 
 |  * numerical permutations. Use colsPermutation() to get it. | 
 |  * | 
 |  * Q is the orthogonal matrix represented as products of Householder reflectors. | 
 |  * Use matrixQ() to get an expression and matrixQ().adjoint() to get the adjoint. | 
 |  * You can then apply it to a vector. | 
 |  * | 
 |  * R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient. | 
 |  * matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank. | 
 |  * | 
 |  * \tparam MatrixType_ The type of the sparse matrix A, must be a column-major SparseMatrix<> | 
 |  * \tparam OrderingType_ The fill-reducing ordering method. See the \link OrderingMethods_Module | 
 |  *  OrderingMethods \endlink module for the list of built-in and external ordering methods. | 
 |  * | 
 |  * \implsparsesolverconcept | 
 |  * | 
 |  * The numerical pivoting strategy and default threshold are the same as in SuiteSparse QR, and | 
 |  * detailed in the following paper: | 
 |  * <i> | 
 |  * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing | 
 |  * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011. | 
 |  * </i> | 
 |  * Even though it is qualified as "rank-revealing", this strategy might fail for some | 
 |  * rank deficient problems. When this class is used to solve linear or least-square problems | 
 |  * it is thus strongly recommended to check the accuracy of the computed solution. If it | 
 |  * failed, it usually helps to increase the threshold with setPivotThreshold. | 
 |  * | 
 |  * \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()). | 
 |  * \warning For complex matrices matrixQ().transpose() will actually return the adjoint matrix. | 
 |  * | 
 |  */ | 
 | template <typename MatrixType_, typename OrderingType_> | 
 | class SparseQR : public SparseSolverBase<SparseQR<MatrixType_, OrderingType_> > { | 
 |  protected: | 
 |   typedef SparseSolverBase<SparseQR<MatrixType_, OrderingType_> > Base; | 
 |   using Base::m_isInitialized; | 
 |  | 
 |  public: | 
 |   using Base::_solve_impl; | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef OrderingType_ OrderingType; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   typedef typename MatrixType::StorageIndex StorageIndex; | 
 |   typedef SparseMatrix<Scalar, ColMajor, StorageIndex> QRMatrixType; | 
 |   typedef Matrix<StorageIndex, Dynamic, 1> IndexVector; | 
 |   typedef Matrix<Scalar, Dynamic, 1> ScalarVector; | 
 |   typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; | 
 |  | 
 |   enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; | 
 |  | 
 |  public: | 
 |   SparseQR() | 
 |       : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true), m_isQSorted(false), m_isEtreeOk(false) {} | 
 |  | 
 |   /** Construct a QR factorization of the matrix \a mat. | 
 |    * | 
 |    * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). | 
 |    * | 
 |    * \sa compute() | 
 |    */ | 
 |   explicit SparseQR(const MatrixType& mat) | 
 |       : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true), m_isQSorted(false), m_isEtreeOk(false) { | 
 |     compute(mat); | 
 |   } | 
 |  | 
 |   /** Computes the QR factorization of the sparse matrix \a mat. | 
 |    * | 
 |    * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). | 
 |    * | 
 |    * \sa analyzePattern(), factorize() | 
 |    */ | 
 |   void compute(const MatrixType& mat) { | 
 |     analyzePattern(mat); | 
 |     factorize(mat); | 
 |   } | 
 |   void analyzePattern(const MatrixType& mat); | 
 |   void factorize(const MatrixType& mat); | 
 |  | 
 |   /** \returns the number of rows of the represented matrix. | 
 |    */ | 
 |   inline Index rows() const { return m_pmat.rows(); } | 
 |  | 
 |   /** \returns the number of columns of the represented matrix. | 
 |    */ | 
 |   inline Index cols() const { return m_pmat.cols(); } | 
 |  | 
 |   /** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization. | 
 |    * \warning The entries of the returned matrix are not sorted. This means that using it in algorithms | 
 |    *          expecting sorted entries will fail. This include random coefficient accesses (SpaseMatrix::coeff()), | 
 |    *          and coefficient-wise operations. Matrix products and triangular solves are fine though. | 
 |    * | 
 |    * To sort the entries, you can assign it to a row-major matrix, and if a column-major matrix | 
 |    * is required, you can copy it again: | 
 |    * \code | 
 |    * SparseMatrix<double>          R  = qr.matrixR();  // column-major, not sorted! | 
 |    * SparseMatrix<double,RowMajor> Rr = qr.matrixR();  // row-major, sorted | 
 |    * SparseMatrix<double>          Rc = Rr;            // column-major, sorted | 
 |    * \endcode | 
 |    */ | 
 |   const QRMatrixType& matrixR() const { return m_R; } | 
 |  | 
 |   /** \returns the number of non linearly dependent columns as determined by the pivoting threshold. | 
 |    * | 
 |    * \sa setPivotThreshold() | 
 |    */ | 
 |   Index rank() const { | 
 |     eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); | 
 |     return m_nonzeropivots; | 
 |   } | 
 |  | 
 |   /** \returns an expression of the matrix Q as products of sparse Householder reflectors. | 
 |    * The common usage of this function is to apply it to a dense matrix or vector | 
 |    * \code | 
 |    * VectorXd B1, B2; | 
 |    * // Initialize B1 | 
 |    * B2 = matrixQ() * B1; | 
 |    * \endcode | 
 |    * | 
 |    * To get a plain SparseMatrix representation of Q: | 
 |    * \code | 
 |    * SparseMatrix<double> Q; | 
 |    * Q = SparseQR<SparseMatrix<double> >(A).matrixQ(); | 
 |    * \endcode | 
 |    * Internally, this call simply performs a sparse product between the matrix Q | 
 |    * and a sparse identity matrix. However, due to the fact that the sparse | 
 |    * reflectors are stored unsorted, two transpositions are needed to sort | 
 |    * them before performing the product. | 
 |    */ | 
 |   SparseQRMatrixQReturnType<SparseQR> matrixQ() const { return SparseQRMatrixQReturnType<SparseQR>(*this); } | 
 |  | 
 |   /** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R | 
 |    * It is the combination of the fill-in reducing permutation and numerical column pivoting. | 
 |    */ | 
 |   const PermutationType& colsPermutation() const { | 
 |     eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |     return m_outputPerm_c; | 
 |   } | 
 |  | 
 |   /** \returns A string describing the type of error. | 
 |    * This method is provided to ease debugging, not to handle errors. | 
 |    */ | 
 |   std::string lastErrorMessage() const { return m_lastError; } | 
 |  | 
 |   /** \internal */ | 
 |   template <typename Rhs, typename Dest> | 
 |   bool _solve_impl(const MatrixBase<Rhs>& B, MatrixBase<Dest>& dest) const { | 
 |     eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); | 
 |     eigen_assert(this->rows() == B.rows() && | 
 |                  "SparseQR::solve() : invalid number of rows in the right hand side matrix"); | 
 |  | 
 |     Index rank = this->rank(); | 
 |  | 
 |     // Compute Q^* * b; | 
 |     typename Dest::PlainObject y, b; | 
 |     y = this->matrixQ().adjoint() * B; | 
 |     b = y; | 
 |  | 
 |     // Solve with the triangular matrix R | 
 |     y.resize((std::max<Index>)(cols(), y.rows()), y.cols()); | 
 |     y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank)); | 
 |     y.bottomRows(y.rows() - rank).setZero(); | 
 |  | 
 |     // Apply the column permutation | 
 |     if (m_perm_c.size()) | 
 |       dest = colsPermutation() * y.topRows(cols()); | 
 |     else | 
 |       dest = y.topRows(cols()); | 
 |  | 
 |     m_info = Success; | 
 |     return true; | 
 |   } | 
 |  | 
 |   /** Sets the threshold that is used to determine linearly dependent columns during the factorization. | 
 |    * | 
 |    * In practice, if during the factorization the norm of the column that has to be eliminated is below | 
 |    * this threshold, then the entire column is treated as zero, and it is moved at the end. | 
 |    */ | 
 |   void setPivotThreshold(const RealScalar& threshold) { | 
 |     m_useDefaultThreshold = false; | 
 |     m_threshold = threshold; | 
 |   } | 
 |  | 
 |   /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. | 
 |    * | 
 |    * \sa compute() | 
 |    */ | 
 |   template <typename Rhs> | 
 |   inline const Solve<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const { | 
 |     eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); | 
 |     eigen_assert(this->rows() == B.rows() && | 
 |                  "SparseQR::solve() : invalid number of rows in the right hand side matrix"); | 
 |     return Solve<SparseQR, Rhs>(*this, B.derived()); | 
 |   } | 
 |   template <typename Rhs> | 
 |   inline const Solve<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const { | 
 |     eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); | 
 |     eigen_assert(this->rows() == B.rows() && | 
 |                  "SparseQR::solve() : invalid number of rows in the right hand side matrix"); | 
 |     return Solve<SparseQR, Rhs>(*this, B.derived()); | 
 |   } | 
 |  | 
 |   /** \brief Reports whether previous computation was successful. | 
 |    * | 
 |    * \returns \c Success if computation was successful, | 
 |    *          \c NumericalIssue if the QR factorization reports a numerical problem | 
 |    *          \c InvalidInput if the input matrix is invalid | 
 |    * | 
 |    * \sa iparm() | 
 |    */ | 
 |   ComputationInfo info() const { | 
 |     eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 |   /** \internal */ | 
 |   inline void _sort_matrix_Q() { | 
 |     if (this->m_isQSorted) return; | 
 |     // The matrix Q is sorted during the transposition | 
 |     SparseMatrix<Scalar, RowMajor, Index> mQrm(this->m_Q); | 
 |     this->m_Q = mQrm; | 
 |     this->m_isQSorted = true; | 
 |   } | 
 |  | 
 |  protected: | 
 |   bool m_analysisIsok; | 
 |   bool m_factorizationIsok; | 
 |   mutable ComputationInfo m_info; | 
 |   std::string m_lastError; | 
 |   QRMatrixType m_pmat;             // Temporary matrix | 
 |   QRMatrixType m_R;                // The triangular factor matrix | 
 |   QRMatrixType m_Q;                // The orthogonal reflectors | 
 |   ScalarVector m_hcoeffs;          // The Householder coefficients | 
 |   PermutationType m_perm_c;        // Fill-reducing  Column  permutation | 
 |   PermutationType m_pivotperm;     // The permutation for rank revealing | 
 |   PermutationType m_outputPerm_c;  // The final column permutation | 
 |   RealScalar m_threshold;          // Threshold to determine null Householder reflections | 
 |   bool m_useDefaultThreshold;      // Use default threshold | 
 |   Index m_nonzeropivots;           // Number of non zero pivots found | 
 |   IndexVector m_etree;             // Column elimination tree | 
 |   IndexVector m_firstRowElt;       // First element in each row | 
 |   bool m_isQSorted;                // whether Q is sorted or not | 
 |   bool m_isEtreeOk;                // whether the elimination tree match the initial input matrix | 
 |  | 
 |   template <typename, typename> | 
 |   friend struct SparseQR_QProduct; | 
 | }; | 
 |  | 
 | /** \brief Preprocessing step of a QR factorization | 
 |  * | 
 |  * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). | 
 |  * | 
 |  * In this step, the fill-reducing permutation is computed and applied to the columns of A | 
 |  * and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited. | 
 |  * | 
 |  * \note In this step it is assumed that there is no empty row in the matrix \a mat. | 
 |  */ | 
 | template <typename MatrixType, typename OrderingType> | 
 | void SparseQR<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat) { | 
 |   eigen_assert( | 
 |       mat.isCompressed() && | 
 |       "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR"); | 
 |   // Copy to a column major matrix if the input is rowmajor | 
 |   std::conditional_t<MatrixType::IsRowMajor, QRMatrixType, const MatrixType&> matCpy(mat); | 
 |   // Compute the column fill reducing ordering | 
 |   OrderingType ord; | 
 |   ord(matCpy, m_perm_c); | 
 |   Index n = mat.cols(); | 
 |   Index m = mat.rows(); | 
 |   Index diagSize = (std::min)(m, n); | 
 |  | 
 |   if (!m_perm_c.size()) { | 
 |     m_perm_c.resize(n); | 
 |     m_perm_c.indices().setLinSpaced(n, 0, StorageIndex(n - 1)); | 
 |   } | 
 |  | 
 |   // Compute the column elimination tree of the permuted matrix | 
 |   m_outputPerm_c = m_perm_c.inverse(); | 
 |   internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data()); | 
 |   m_isEtreeOk = true; | 
 |  | 
 |   m_R.resize(m, n); | 
 |   m_Q.resize(m, diagSize); | 
 |  | 
 |   // Allocate space for nonzero elements: rough estimation | 
 |   m_R.reserve(2 * mat.nonZeros());  // FIXME Get a more accurate estimation through symbolic factorization with the | 
 |                                     // etree | 
 |   m_Q.reserve(2 * mat.nonZeros()); | 
 |   m_hcoeffs.resize(diagSize); | 
 |   m_analysisIsok = true; | 
 | } | 
 |  | 
 | /** \brief Performs the numerical QR factorization of the input matrix | 
 |  * | 
 |  * The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with | 
 |  * a matrix having the same sparsity pattern than \a mat. | 
 |  * | 
 |  * \param mat The sparse column-major matrix | 
 |  */ | 
 | template <typename MatrixType, typename OrderingType> | 
 | void SparseQR<MatrixType, OrderingType>::factorize(const MatrixType& mat) { | 
 |   using std::abs; | 
 |  | 
 |   eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step"); | 
 |   StorageIndex m = StorageIndex(mat.rows()); | 
 |   StorageIndex n = StorageIndex(mat.cols()); | 
 |   StorageIndex diagSize = (std::min)(m, n); | 
 |   IndexVector mark((std::max)(m, n)); | 
 |   mark.setConstant(-1);          // Record the visited nodes | 
 |   IndexVector Ridx(n), Qidx(m);  // Store temporarily the row indexes for the current column of R and Q | 
 |   Index nzcolR, nzcolQ;          // Number of nonzero for the current column of R and Q | 
 |   ScalarVector tval(m);          // The dense vector used to compute the current column | 
 |   RealScalar pivotThreshold = m_threshold; | 
 |  | 
 |   m_R.setZero(); | 
 |   m_Q.setZero(); | 
 |   m_pmat = mat; | 
 |   if (!m_isEtreeOk) { | 
 |     m_outputPerm_c = m_perm_c.inverse(); | 
 |     internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data()); | 
 |     m_isEtreeOk = true; | 
 |   } | 
 |  | 
 |   m_pmat.uncompress();  // To have the innerNonZeroPtr allocated | 
 |  | 
 |   // Apply the fill-in reducing permutation lazily: | 
 |   { | 
 |     // If the input is row major, copy the original column indices, | 
 |     // otherwise directly use the input matrix | 
 |     // | 
 |     IndexVector originalOuterIndicesCpy; | 
 |     const StorageIndex* originalOuterIndices = mat.outerIndexPtr(); | 
 |     if (MatrixType::IsRowMajor) { | 
 |       originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(), n + 1); | 
 |       originalOuterIndices = originalOuterIndicesCpy.data(); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < n; i++) { | 
 |       Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i; | 
 |       m_pmat.outerIndexPtr()[p] = originalOuterIndices[i]; | 
 |       m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i + 1] - originalOuterIndices[i]; | 
 |     } | 
 |   } | 
 |  | 
 |   /* Compute the default threshold as in MatLab, see: | 
 |    * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing | 
 |    * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 | 
 |    */ | 
 |   if (m_useDefaultThreshold) { | 
 |     RealScalar max2Norm = 0.0; | 
 |     for (int j = 0; j < n; j++) max2Norm = numext::maxi(max2Norm, m_pmat.col(j).norm()); | 
 |     if (max2Norm == RealScalar(0)) max2Norm = RealScalar(1); | 
 |     pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon(); | 
 |   } | 
 |  | 
 |   // Initialize the numerical permutation | 
 |   m_pivotperm.setIdentity(n); | 
 |  | 
 |   StorageIndex nonzeroCol = 0;  // Record the number of valid pivots | 
 |   m_Q.startVec(0); | 
 |  | 
 |   // Left looking rank-revealing QR factorization: compute a column of R and Q at a time | 
 |   for (StorageIndex col = 0; col < n; ++col) { | 
 |     mark.setConstant(-1); | 
 |     m_R.startVec(col); | 
 |     mark(nonzeroCol) = col; | 
 |     Qidx(0) = nonzeroCol; | 
 |     nzcolR = 0; | 
 |     nzcolQ = 1; | 
 |     bool found_diag = nonzeroCol >= m; | 
 |     tval.setZero(); | 
 |  | 
 |     // Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e., | 
 |     // all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node | 
 |     // k. Note: if the diagonal entry does not exist, then its contribution must be explicitly added, thus the trick | 
 |     // with found_diag that permits to do one more iteration on the diagonal element if this one has not been found. | 
 |     for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp) { | 
 |       StorageIndex curIdx = nonzeroCol; | 
 |       if (itp) curIdx = StorageIndex(itp.row()); | 
 |       if (curIdx == nonzeroCol) found_diag = true; | 
 |  | 
 |       // Get the nonzeros indexes of the current column of R | 
 |       StorageIndex st = m_firstRowElt(curIdx);  // The traversal of the etree starts here | 
 |       if (st < 0) { | 
 |         m_lastError = "Empty row found during numerical factorization"; | 
 |         m_info = InvalidInput; | 
 |         return; | 
 |       } | 
 |  | 
 |       // Traverse the etree | 
 |       Index bi = nzcolR; | 
 |       for (; mark(st) != col; st = m_etree(st)) { | 
 |         Ridx(nzcolR) = st;  // Add this row to the list, | 
 |         mark(st) = col;     // and mark this row as visited | 
 |         nzcolR++; | 
 |       } | 
 |  | 
 |       // Reverse the list to get the topological ordering | 
 |       Index nt = nzcolR - bi; | 
 |       for (Index i = 0; i < nt / 2; i++) std::swap(Ridx(bi + i), Ridx(nzcolR - i - 1)); | 
 |  | 
 |       // Copy the current (curIdx,pcol) value of the input matrix | 
 |       if (itp) | 
 |         tval(curIdx) = itp.value(); | 
 |       else | 
 |         tval(curIdx) = Scalar(0); | 
 |  | 
 |       // Compute the pattern of Q(:,k) | 
 |       if (curIdx > nonzeroCol && mark(curIdx) != col) { | 
 |         Qidx(nzcolQ) = curIdx;  // Add this row to the pattern of Q, | 
 |         mark(curIdx) = col;     // and mark it as visited | 
 |         nzcolQ++; | 
 |       } | 
 |     } | 
 |  | 
 |     // Browse all the indexes of R(:,col) in reverse order | 
 |     for (Index i = nzcolR - 1; i >= 0; i--) { | 
 |       Index curIdx = Ridx(i); | 
 |  | 
 |       // Apply the curIdx-th householder vector to the current column (temporarily stored into tval) | 
 |       Scalar tdot(0); | 
 |  | 
 |       // First compute q' * tval | 
 |       tdot = m_Q.col(curIdx).dot(tval); | 
 |  | 
 |       tdot *= m_hcoeffs(curIdx); | 
 |  | 
 |       // Then update tval = tval - q * tau | 
 |       tval -= tdot * m_Q.col(curIdx); | 
 |  | 
 |       // Detect fill-in for the current column of Q | 
 |       if (m_etree(Ridx(i)) == nonzeroCol) { | 
 |         for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq) { | 
 |           StorageIndex iQ = StorageIndex(itq.row()); | 
 |           if (mark(iQ) != col) { | 
 |             Qidx(nzcolQ++) = iQ;  // Add this row to the pattern of Q, | 
 |             mark(iQ) = col;       // and mark it as visited | 
 |           } | 
 |         } | 
 |       } | 
 |     }  // End update current column | 
 |  | 
 |     Scalar tau = RealScalar(0); | 
 |     RealScalar beta = 0; | 
 |  | 
 |     if (nonzeroCol < diagSize) { | 
 |       // Compute the Householder reflection that eliminate the current column | 
 |       // FIXME this step should call the Householder module. | 
 |       Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0); | 
 |  | 
 |       // First, the squared norm of Q((col+1):m, col) | 
 |       RealScalar sqrNorm = 0.; | 
 |       for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq))); | 
 |       if (sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0)) { | 
 |         beta = numext::real(c0); | 
 |         tval(Qidx(0)) = 1; | 
 |       } else { | 
 |         using std::sqrt; | 
 |         beta = sqrt(numext::abs2(c0) + sqrNorm); | 
 |         if (numext::real(c0) >= RealScalar(0)) beta = -beta; | 
 |         tval(Qidx(0)) = 1; | 
 |         for (Index itq = 1; itq < nzcolQ; ++itq) tval(Qidx(itq)) /= (c0 - beta); | 
 |         tau = numext::conj((beta - c0) / beta); | 
 |       } | 
 |     } | 
 |  | 
 |     // Insert values in R | 
 |     for (Index i = nzcolR - 1; i >= 0; i--) { | 
 |       Index curIdx = Ridx(i); | 
 |       if (curIdx < nonzeroCol) { | 
 |         m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx); | 
 |         tval(curIdx) = Scalar(0.); | 
 |       } | 
 |     } | 
 |  | 
 |     if (nonzeroCol < diagSize && abs(beta) >= pivotThreshold) { | 
 |       m_R.insertBackByOuterInner(col, nonzeroCol) = beta; | 
 |       // The householder coefficient | 
 |       m_hcoeffs(nonzeroCol) = tau; | 
 |       // Record the householder reflections | 
 |       for (Index itq = 0; itq < nzcolQ; ++itq) { | 
 |         Index iQ = Qidx(itq); | 
 |         m_Q.insertBackByOuterInnerUnordered(nonzeroCol, iQ) = tval(iQ); | 
 |         tval(iQ) = Scalar(0.); | 
 |       } | 
 |       nonzeroCol++; | 
 |       if (nonzeroCol < diagSize) m_Q.startVec(nonzeroCol); | 
 |     } else { | 
 |       // Zero pivot found: move implicitly this column to the end | 
 |       for (Index j = nonzeroCol; j < n - 1; j++) std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j + 1]); | 
 |  | 
 |       // Recompute the column elimination tree | 
 |       internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data()); | 
 |       m_isEtreeOk = false; | 
 |     } | 
 |   } | 
 |  | 
 |   m_hcoeffs.tail(diagSize - nonzeroCol).setZero(); | 
 |  | 
 |   // Finalize the column pointers of the sparse matrices R and Q | 
 |   m_Q.finalize(); | 
 |   m_Q.makeCompressed(); | 
 |   m_R.finalize(); | 
 |   m_R.makeCompressed(); | 
 |   m_isQSorted = false; | 
 |  | 
 |   m_nonzeropivots = nonzeroCol; | 
 |  | 
 |   if (nonzeroCol < n) { | 
 |     // Permute the triangular factor to put the 'dead' columns to the end | 
 |     QRMatrixType tempR(m_R); | 
 |     m_R = tempR * m_pivotperm; | 
 |  | 
 |     // Update the column permutation | 
 |     m_outputPerm_c = m_outputPerm_c * m_pivotperm; | 
 |   } | 
 |  | 
 |   m_isInitialized = true; | 
 |   m_factorizationIsok = true; | 
 |   m_info = Success; | 
 | } | 
 |  | 
 | template <typename SparseQRType, typename Derived> | 
 | struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> > { | 
 |   typedef typename SparseQRType::QRMatrixType MatrixType; | 
 |   typedef typename SparseQRType::Scalar Scalar; | 
 |   // Get the references | 
 |   SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) | 
 |       : m_qr(qr), m_other(other), m_transpose(transpose) {} | 
 |   inline Index rows() const { return m_qr.matrixQ().rows(); } | 
 |   inline Index cols() const { return m_other.cols(); } | 
 |  | 
 |   // Assign to a vector | 
 |   template <typename DesType> | 
 |   void evalTo(DesType& res) const { | 
 |     Index m = m_qr.rows(); | 
 |     Index n = m_qr.cols(); | 
 |     Index diagSize = (std::min)(m, n); | 
 |     res = m_other; | 
 |     if (m_transpose) { | 
 |       eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes"); | 
 |       // Compute res = Q' * other column by column | 
 |       for (Index j = 0; j < res.cols(); j++) { | 
 |         for (Index k = 0; k < diagSize; k++) { | 
 |           Scalar tau = Scalar(0); | 
 |           tau = m_qr.m_Q.col(k).dot(res.col(j)); | 
 |           if (tau == Scalar(0)) continue; | 
 |           tau = tau * m_qr.m_hcoeffs(k); | 
 |           res.col(j) -= tau * m_qr.m_Q.col(k); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       eigen_assert(m_qr.matrixQ().cols() == m_other.rows() && "Non conforming object sizes"); | 
 |  | 
 |       res.conservativeResize(rows(), cols()); | 
 |  | 
 |       // Compute res = Q * other column by column | 
 |       for (Index j = 0; j < res.cols(); j++) { | 
 |         Index start_k = internal::is_identity<Derived>::value ? numext::mini(j, diagSize - 1) : diagSize - 1; | 
 |         for (Index k = start_k; k >= 0; k--) { | 
 |           Scalar tau = Scalar(0); | 
 |           tau = m_qr.m_Q.col(k).dot(res.col(j)); | 
 |           if (tau == Scalar(0)) continue; | 
 |           tau = tau * numext::conj(m_qr.m_hcoeffs(k)); | 
 |           res.col(j) -= tau * m_qr.m_Q.col(k); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   const SparseQRType& m_qr; | 
 |   const Derived& m_other; | 
 |   bool m_transpose;  // TODO this actually means adjoint | 
 | }; | 
 |  | 
 | template <typename SparseQRType> | 
 | struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<SparseQRType> > { | 
 |   typedef typename SparseQRType::Scalar Scalar; | 
 |   typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix; | 
 |   enum { RowsAtCompileTime = Dynamic, ColsAtCompileTime = Dynamic }; | 
 |   explicit SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {} | 
 |   template <typename Derived> | 
 |   SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other) { | 
 |     return SparseQR_QProduct<SparseQRType, Derived>(m_qr, other.derived(), false); | 
 |   } | 
 |   // To use for operations with the adjoint of Q | 
 |   SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const { | 
 |     return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr); | 
 |   } | 
 |   inline Index rows() const { return m_qr.rows(); } | 
 |   inline Index cols() const { return m_qr.rows(); } | 
 |   // To use for operations with the transpose of Q FIXME this is the same as adjoint at the moment | 
 |   SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const { | 
 |     return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr); | 
 |   } | 
 |   const SparseQRType& m_qr; | 
 | }; | 
 |  | 
 | // TODO this actually represents the adjoint of Q | 
 | template <typename SparseQRType> | 
 | struct SparseQRMatrixQTransposeReturnType { | 
 |   explicit SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {} | 
 |   template <typename Derived> | 
 |   SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other) { | 
 |     return SparseQR_QProduct<SparseQRType, Derived>(m_qr, other.derived(), true); | 
 |   } | 
 |   const SparseQRType& m_qr; | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename SparseQRType> | 
 | struct evaluator_traits<SparseQRMatrixQReturnType<SparseQRType> > { | 
 |   typedef typename SparseQRType::MatrixType MatrixType; | 
 |   typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; | 
 |   typedef SparseShape Shape; | 
 | }; | 
 |  | 
 | template <typename DstXprType, typename SparseQRType> | 
 | struct Assignment<DstXprType, SparseQRMatrixQReturnType<SparseQRType>, | 
 |                   internal::assign_op<typename DstXprType::Scalar, typename DstXprType::Scalar>, Sparse2Sparse> { | 
 |   typedef SparseQRMatrixQReturnType<SparseQRType> SrcXprType; | 
 |   typedef typename DstXprType::Scalar Scalar; | 
 |   typedef typename DstXprType::StorageIndex StorageIndex; | 
 |   static void run(DstXprType& dst, const SrcXprType& src, const internal::assign_op<Scalar, Scalar>& /*func*/) { | 
 |     typename DstXprType::PlainObject idMat(src.rows(), src.cols()); | 
 |     idMat.setIdentity(); | 
 |     // Sort the sparse householder reflectors if needed | 
 |     const_cast<SparseQRType*>(&src.m_qr)->_sort_matrix_Q(); | 
 |     dst = SparseQR_QProduct<SparseQRType, DstXprType>(src.m_qr, idMat, false); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename DstXprType, typename SparseQRType> | 
 | struct Assignment<DstXprType, SparseQRMatrixQReturnType<SparseQRType>, | 
 |                   internal::assign_op<typename DstXprType::Scalar, typename DstXprType::Scalar>, Sparse2Dense> { | 
 |   typedef SparseQRMatrixQReturnType<SparseQRType> SrcXprType; | 
 |   typedef typename DstXprType::Scalar Scalar; | 
 |   typedef typename DstXprType::StorageIndex StorageIndex; | 
 |   static void run(DstXprType& dst, const SrcXprType& src, const internal::assign_op<Scalar, Scalar>& /*func*/) { | 
 |     dst = src.m_qr.matrixQ() * DstXprType::Identity(src.m_qr.rows(), src.m_qr.rows()); | 
 |   } | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif |