|  |  | 
|  | // g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2  ./a.out | 
|  | // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp  && OMP_NUM_THREADS=2  ./a.out | 
|  |  | 
|  | // Compilation options: | 
|  | // | 
|  | // -DSCALAR=std::complex<double> | 
|  | // -DSCALARA=double or -DSCALARB=double | 
|  | // -DHAVE_BLAS | 
|  | // -DDECOUPLED | 
|  | // | 
|  |  | 
|  | #include <iostream> | 
|  | #include <bench/BenchTimer.h> | 
|  | #include <Eigen/Core> | 
|  |  | 
|  | using namespace std; | 
|  | using namespace Eigen; | 
|  |  | 
|  | #ifndef SCALAR | 
|  | // #define SCALAR std::complex<float> | 
|  | #define SCALAR float | 
|  | #endif | 
|  |  | 
|  | #ifndef SCALARA | 
|  | #define SCALARA SCALAR | 
|  | #endif | 
|  |  | 
|  | #ifndef SCALARB | 
|  | #define SCALARB SCALAR | 
|  | #endif | 
|  |  | 
|  | #ifdef ROWMAJ_A | 
|  | const int opt_A = RowMajor; | 
|  | #else | 
|  | const int opt_A = ColMajor; | 
|  | #endif | 
|  |  | 
|  | #ifdef ROWMAJ_B | 
|  | const int opt_B = RowMajor; | 
|  | #else | 
|  | const int opt_B = ColMajor; | 
|  | #endif | 
|  |  | 
|  | typedef SCALAR Scalar; | 
|  | typedef NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<SCALARA, Dynamic, Dynamic, opt_A> A; | 
|  | typedef Matrix<SCALARB, Dynamic, Dynamic, opt_B> B; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic> C; | 
|  | typedef Matrix<RealScalar, Dynamic, Dynamic> M; | 
|  |  | 
|  | #ifdef HAVE_BLAS | 
|  |  | 
|  | extern "C" { | 
|  | #include <Eigen/src/misc/blas.h> | 
|  | } | 
|  |  | 
|  | static float fone = 1; | 
|  | static float fzero = 0; | 
|  | static double done = 1; | 
|  | static double szero = 0; | 
|  | static std::complex<float> cfone = 1; | 
|  | static std::complex<float> cfzero = 0; | 
|  | static std::complex<double> cdone = 1; | 
|  | static std::complex<double> cdzero = 0; | 
|  | static char notrans = 'N'; | 
|  | static char trans = 'T'; | 
|  | static char nonunit = 'N'; | 
|  | static char lower = 'L'; | 
|  | static char right = 'R'; | 
|  | static int intone = 1; | 
|  |  | 
|  | #ifdef ROWMAJ_A | 
|  | const char transA = trans; | 
|  | #else | 
|  | const char transA = notrans; | 
|  | #endif | 
|  |  | 
|  | #ifdef ROWMAJ_B | 
|  | const char transB = trans; | 
|  | #else | 
|  | const char transB = notrans; | 
|  | #endif | 
|  |  | 
|  | template <typename A, typename B> | 
|  | void blas_gemm(const A& a, const B& b, MatrixXf& c) { | 
|  | int M = c.rows(); | 
|  | int N = c.cols(); | 
|  | int K = a.cols(); | 
|  | int lda = a.outerStride(); | 
|  | int ldb = b.outerStride(); | 
|  | int ldc = c.rows(); | 
|  |  | 
|  | sgemm_(&transA, &transB, &M, &N, &K, &fone, const_cast<float*>(a.data()), &lda, const_cast<float*>(b.data()), &ldb, | 
|  | &fone, c.data(), &ldc); | 
|  | } | 
|  |  | 
|  | template <typename A, typename B> | 
|  | void blas_gemm(const A& a, const B& b, MatrixXd& c) { | 
|  | int M = c.rows(); | 
|  | int N = c.cols(); | 
|  | int K = a.cols(); | 
|  | int lda = a.outerStride(); | 
|  | int ldb = b.outerStride(); | 
|  | int ldc = c.rows(); | 
|  |  | 
|  | dgemm_(&transA, &transB, &M, &N, &K, &done, const_cast<double*>(a.data()), &lda, const_cast<double*>(b.data()), &ldb, | 
|  | &done, c.data(), &ldc); | 
|  | } | 
|  |  | 
|  | template <typename A, typename B> | 
|  | void blas_gemm(const A& a, const B& b, MatrixXcf& c) { | 
|  | int M = c.rows(); | 
|  | int N = c.cols(); | 
|  | int K = a.cols(); | 
|  | int lda = a.outerStride(); | 
|  | int ldb = b.outerStride(); | 
|  | int ldc = c.rows(); | 
|  |  | 
|  | cgemm_(&transA, &transB, &M, &N, &K, (float*)&cfone, const_cast<float*>((const float*)a.data()), &lda, | 
|  | const_cast<float*>((const float*)b.data()), &ldb, (float*)&cfone, (float*)c.data(), &ldc); | 
|  | } | 
|  |  | 
|  | template <typename A, typename B> | 
|  | void blas_gemm(const A& a, const B& b, MatrixXcd& c) { | 
|  | int M = c.rows(); | 
|  | int N = c.cols(); | 
|  | int K = a.cols(); | 
|  | int lda = a.outerStride(); | 
|  | int ldb = b.outerStride(); | 
|  | int ldc = c.rows(); | 
|  |  | 
|  | zgemm_(&transA, &transB, &M, &N, &K, (double*)&cdone, const_cast<double*>((const double*)a.data()), &lda, | 
|  | const_cast<double*>((const double*)b.data()), &ldb, (double*)&cdone, (double*)c.data(), &ldc); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci) { | 
|  | cr.noalias() += ar * br; | 
|  | cr.noalias() -= ai * bi; | 
|  | ci.noalias() += ar * bi; | 
|  | ci.noalias() += ai * br; | 
|  | // [cr ci] += [ar ai] * br + [-ai ar] * bi | 
|  | } | 
|  |  | 
|  | void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci) { | 
|  | cr.noalias() += a * br; | 
|  | ci.noalias() += a * bi; | 
|  | } | 
|  |  | 
|  | void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci) { | 
|  | cr.noalias() += ar * b; | 
|  | ci.noalias() += ai * b; | 
|  | } | 
|  |  | 
|  | template <typename A, typename B, typename C> | 
|  | EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) { | 
|  | c.noalias() += a * b; | 
|  | } | 
|  |  | 
|  | int main(int argc, char** argv) { | 
|  | std::ptrdiff_t l1 = internal::queryL1CacheSize(); | 
|  | std::ptrdiff_t l2 = internal::queryTopLevelCacheSize(); | 
|  | std::cout << "L1 cache size     = " << (l1 > 0 ? l1 / 1024 : -1) << " KB\n"; | 
|  | std::cout << "L2/L3 cache size  = " << (l2 > 0 ? l2 / 1024 : -1) << " KB\n"; | 
|  | typedef internal::gebp_traits<Scalar, Scalar> Traits; | 
|  | std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n"; | 
|  |  | 
|  | int rep = 1;    // number of repetitions per try | 
|  | int tries = 2;  // number of tries, we keep the best | 
|  |  | 
|  | int s = 2048; | 
|  | int m = s; | 
|  | int n = s; | 
|  | int p = s; | 
|  | int cache_size1 = -1, cache_size2 = l2, cache_size3 = 0; | 
|  |  | 
|  | bool need_help = false; | 
|  | for (int i = 1; i < argc;) { | 
|  | if (argv[i][0] == '-') { | 
|  | if (argv[i][1] == 's') { | 
|  | ++i; | 
|  | s = atoi(argv[i++]); | 
|  | m = n = p = s; | 
|  | if (argv[i][0] != '-') { | 
|  | n = atoi(argv[i++]); | 
|  | p = atoi(argv[i++]); | 
|  | } | 
|  | } else if (argv[i][1] == 'c') { | 
|  | ++i; | 
|  | cache_size1 = atoi(argv[i++]); | 
|  | if (argv[i][0] != '-') { | 
|  | cache_size2 = atoi(argv[i++]); | 
|  | if (argv[i][0] != '-') cache_size3 = atoi(argv[i++]); | 
|  | } | 
|  | } else if (argv[i][1] == 't') { | 
|  | tries = atoi(argv[++i]); | 
|  | ++i; | 
|  | } else if (argv[i][1] == 'p') { | 
|  | ++i; | 
|  | rep = atoi(argv[i++]); | 
|  | } | 
|  | } else { | 
|  | need_help = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (need_help) { | 
|  | std::cout << argv[0] << " -s <matrix sizes> -c <cache sizes> -t <nb tries> -p <nb repeats>\n"; | 
|  | std::cout << "   <matrix sizes> : size\n"; | 
|  | std::cout << "   <matrix sizes> : rows columns depth\n"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #if EIGEN_VERSION_AT_LEAST(3, 2, 90) | 
|  | if (cache_size1 > 0) setCpuCacheSizes(cache_size1, cache_size2, cache_size3); | 
|  | #endif | 
|  |  | 
|  | A a(m, p); | 
|  | a.setRandom(); | 
|  | B b(p, n); | 
|  | b.setRandom(); | 
|  | C c(m, n); | 
|  | c.setOnes(); | 
|  | C rc = c; | 
|  |  | 
|  | std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n"; | 
|  | std::ptrdiff_t mc(m), nc(n), kc(p); | 
|  | internal::computeProductBlockingSizes<Scalar, Scalar>(kc, mc, nc); | 
|  | std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << " x " << nc << "\n"; | 
|  |  | 
|  | C r = c; | 
|  |  | 
|  | // check the parallel product is correct | 
|  | #if defined EIGEN_HAS_OPENMP | 
|  | Eigen::initParallel(); | 
|  | int procs = omp_get_max_threads(); | 
|  | if (procs > 1) { | 
|  | #ifdef HAVE_BLAS | 
|  | blas_gemm(a, b, r); | 
|  | #else | 
|  | omp_set_num_threads(1); | 
|  | r.noalias() += a * b; | 
|  | omp_set_num_threads(procs); | 
|  | #endif | 
|  | c.noalias() += a * b; | 
|  | if (!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n"; | 
|  | } | 
|  | #elif defined HAVE_BLAS | 
|  | blas_gemm(a, b, r); | 
|  | c.noalias() += a * b; | 
|  | if (!r.isApprox(c)) { | 
|  | std::cout << (r - c).norm() / r.norm() << "\n"; | 
|  | std::cerr << "Warning, your product is crap!\n\n"; | 
|  | } | 
|  | #else | 
|  | if (1. * m * n * p < 2000. * 2000 * 2000) { | 
|  | gemm(a, b, c); | 
|  | r.noalias() += a.cast<Scalar>().lazyProduct(b.cast<Scalar>()); | 
|  | if (!r.isApprox(c)) { | 
|  | std::cout << (r - c).norm() / r.norm() << "\n"; | 
|  | std::cerr << "Warning, your product is crap!\n\n"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef HAVE_BLAS | 
|  | BenchTimer tblas; | 
|  | c = rc; | 
|  | BENCH(tblas, tries, rep, blas_gemm(a, b, c)); | 
|  | std::cout << "blas  cpu         " << tblas.best(CPU_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / tblas.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tblas.total(CPU_TIMER) | 
|  | << "s)\n"; | 
|  | std::cout << "blas  real        " << tblas.best(REAL_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / tblas.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << tblas.total(REAL_TIMER) | 
|  | << "s)\n"; | 
|  | #endif | 
|  |  | 
|  | // warm start | 
|  | if (b.norm() + a.norm() == 123.554) std::cout << "\n"; | 
|  |  | 
|  | BenchTimer tmt; | 
|  | c = rc; | 
|  | BENCH(tmt, tries, rep, gemm(a, b, c)); | 
|  | std::cout << "eigen cpu         " << tmt.best(CPU_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / tmt.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) | 
|  | << "s)\n"; | 
|  | std::cout << "eigen real        " << tmt.best(REAL_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / tmt.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) | 
|  | << "s)\n"; | 
|  |  | 
|  | #ifdef EIGEN_HAS_OPENMP | 
|  | if (procs > 1) { | 
|  | BenchTimer tmono; | 
|  | omp_set_num_threads(1); | 
|  | Eigen::setNbThreads(1); | 
|  | c = rc; | 
|  | BENCH(tmono, tries, rep, gemm(a, b, c)); | 
|  | std::cout << "eigen mono cpu    " << tmono.best(CPU_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / tmono.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tmono.total(CPU_TIMER) | 
|  | << "s)\n"; | 
|  | std::cout << "eigen mono real   " << tmono.best(REAL_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / tmono.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" | 
|  | << tmono.total(REAL_TIMER) << "s)\n"; | 
|  | std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER) << " => " | 
|  | << (100.0 * tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER)) / procs << "%\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (1. * m * n * p < 30 * 30 * 30) { | 
|  | BenchTimer tmt; | 
|  | c = rc; | 
|  | BENCH(tmt, tries, rep, c.noalias() += a.lazyProduct(b)); | 
|  | std::cout << "lazy cpu         " << tmt.best(CPU_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / tmt.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) | 
|  | << "s)\n"; | 
|  | std::cout << "lazy real        " << tmt.best(REAL_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / tmt.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) | 
|  | << "s)\n"; | 
|  | } | 
|  |  | 
|  | #ifdef DECOUPLED | 
|  | if ((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) { | 
|  | M ar(m, p); | 
|  | ar.setRandom(); | 
|  | M ai(m, p); | 
|  | ai.setRandom(); | 
|  | M br(p, n); | 
|  | br.setRandom(); | 
|  | M bi(p, n); | 
|  | bi.setRandom(); | 
|  | M cr(m, n); | 
|  | cr.setRandom(); | 
|  | M ci(m, n); | 
|  | ci.setRandom(); | 
|  |  | 
|  | BenchTimer t; | 
|  | BENCH(t, tries, rep, matlab_cplx_cplx(ar, ai, br, bi, cr, ci)); | 
|  | std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) | 
|  | << "s)\n"; | 
|  | std::cout << "\"matlab\" real   " << t.best(REAL_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) | 
|  | << "s)\n"; | 
|  | } | 
|  | if ((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) { | 
|  | M a(m, p); | 
|  | a.setRandom(); | 
|  | M br(p, n); | 
|  | br.setRandom(); | 
|  | M bi(p, n); | 
|  | bi.setRandom(); | 
|  | M cr(m, n); | 
|  | cr.setRandom(); | 
|  | M ci(m, n); | 
|  | ci.setRandom(); | 
|  |  | 
|  | BenchTimer t; | 
|  | BENCH(t, tries, rep, matlab_real_cplx(a, br, bi, cr, ci)); | 
|  | std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) | 
|  | << "s)\n"; | 
|  | std::cout << "\"matlab\" real   " << t.best(REAL_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) | 
|  | << "s)\n"; | 
|  | } | 
|  | if ((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex)) { | 
|  | M ar(m, p); | 
|  | ar.setRandom(); | 
|  | M ai(m, p); | 
|  | ai.setRandom(); | 
|  | M b(p, n); | 
|  | b.setRandom(); | 
|  | M cr(m, n); | 
|  | cr.setRandom(); | 
|  | M ci(m, n); | 
|  | ci.setRandom(); | 
|  |  | 
|  | BenchTimer t; | 
|  | BENCH(t, tries, rep, matlab_cplx_real(ar, ai, b, cr, ci)); | 
|  | std::cout << "\"matlab\" cpu    " << t.best(CPU_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / t.best(CPU_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) | 
|  | << "s)\n"; | 
|  | std::cout << "\"matlab\" real   " << t.best(REAL_TIMER) / rep << "s  \t" | 
|  | << (double(m) * n * p * rep * 2 / t.best(REAL_TIMER)) * 1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) | 
|  | << "s)\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } |