|  | //===================================================== | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | //===================================================== | 
|  | // | 
|  | // This program is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License | 
|  | // as published by the Free Software Foundation; either version 2 | 
|  | // of the License, or (at your option) any later version. | 
|  | // | 
|  | // This program is distributed in the hope that it will be useful, | 
|  | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | // GNU General Public License for more details. | 
|  | // You should have received a copy of the GNU General Public License | 
|  | // along with this program; if not, write to the Free Software | 
|  | // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
|  | // | 
|  | #ifndef EIGEN3_INTERFACE_HH | 
|  | #define EIGEN3_INTERFACE_HH | 
|  |  | 
|  | #include <Eigen/Eigen> | 
|  | #include <vector> | 
|  | #include "btl.hh" | 
|  |  | 
|  | using namespace Eigen; | 
|  |  | 
|  | template <class real, int SIZE = Dynamic> | 
|  | class eigen3_interface { | 
|  | public: | 
|  | enum { IsFixedSize = (SIZE != Dynamic) }; | 
|  |  | 
|  | typedef real real_type; | 
|  |  | 
|  | typedef std::vector<real> stl_vector; | 
|  | typedef std::vector<stl_vector> stl_matrix; | 
|  |  | 
|  | typedef Eigen::Matrix<real, SIZE, SIZE> gene_matrix; | 
|  | typedef Eigen::Matrix<real, SIZE, 1> gene_vector; | 
|  |  | 
|  | static inline std::string name(void) { return EIGEN_MAKESTRING(BTL_PREFIX); } | 
|  |  | 
|  | static void free_matrix(gene_matrix& /*A*/, int /*N*/) {} | 
|  |  | 
|  | static void free_vector(gene_vector& /*B*/) {} | 
|  |  | 
|  | static BTL_DONT_INLINE void matrix_from_stl(gene_matrix& A, stl_matrix& A_stl) { | 
|  | A.resize(A_stl[0].size(), A_stl.size()); | 
|  |  | 
|  | for (unsigned int j = 0; j < A_stl.size(); j++) { | 
|  | for (unsigned int i = 0; i < A_stl[j].size(); i++) { | 
|  | A.coeffRef(i, j) = A_stl[j][i]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static BTL_DONT_INLINE void vector_from_stl(gene_vector& B, stl_vector& B_stl) { | 
|  | B.resize(B_stl.size(), 1); | 
|  |  | 
|  | for (unsigned int i = 0; i < B_stl.size(); i++) { | 
|  | B.coeffRef(i) = B_stl[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static BTL_DONT_INLINE void vector_to_stl(gene_vector& B, stl_vector& B_stl) { | 
|  | for (unsigned int i = 0; i < B_stl.size(); i++) { | 
|  | B_stl[i] = B.coeff(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static BTL_DONT_INLINE void matrix_to_stl(gene_matrix& A, stl_matrix& A_stl) { | 
|  | int N = A_stl.size(); | 
|  |  | 
|  | for (int j = 0; j < N; j++) { | 
|  | A_stl[j].resize(N); | 
|  | for (int i = 0; i < N; i++) { | 
|  | A_stl[j][i] = A.coeff(i, j); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void matrix_matrix_product(const gene_matrix& A, const gene_matrix& B, gene_matrix& X, int /*N*/) { | 
|  | X.noalias() = A * B; | 
|  | } | 
|  |  | 
|  | static inline void transposed_matrix_matrix_product(const gene_matrix& A, const gene_matrix& B, gene_matrix& X, | 
|  | int /*N*/) { | 
|  | X.noalias() = A.transpose() * B.transpose(); | 
|  | } | 
|  |  | 
|  | static inline void ata_product(const gene_matrix& A, gene_matrix& X, int /*N*/) { | 
|  | // X.noalias() = A.transpose()*A; | 
|  | X.template triangularView<Lower>().setZero(); | 
|  | X.template selfadjointView<Lower>().rankUpdate(A.transpose()); | 
|  | } | 
|  |  | 
|  | static inline void aat_product(const gene_matrix& A, gene_matrix& X, int /*N*/) { | 
|  | X.template triangularView<Lower>().setZero(); | 
|  | X.template selfadjointView<Lower>().rankUpdate(A); | 
|  | } | 
|  |  | 
|  | static inline void matrix_vector_product(const gene_matrix& A, const gene_vector& B, gene_vector& X, int /*N*/) { | 
|  | X.noalias() = A * B; | 
|  | } | 
|  |  | 
|  | static inline void symv(const gene_matrix& A, const gene_vector& B, gene_vector& X, int /*N*/) { | 
|  | X.noalias() = (A.template selfadjointView<Lower>() * B); | 
|  | //     internal::product_selfadjoint_vector<real,0,LowerTriangularBit,false,false>(N,A.data(),N, B.data(), 1, | 
|  | //     X.data(), 1); | 
|  | } | 
|  |  | 
|  | template <typename Dest, typename Src> | 
|  | static void triassign(Dest& dst, const Src& src) { | 
|  | typedef typename Dest::Scalar Scalar; | 
|  | typedef typename internal::packet_traits<Scalar>::type Packet; | 
|  | const int PacketSize = sizeof(Packet) / sizeof(Scalar); | 
|  | int size = dst.cols(); | 
|  | for (int j = 0; j < size; j += 1) { | 
|  | //       const int alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask); | 
|  | Scalar* A0 = dst.data() + j * dst.stride(); | 
|  | int starti = j; | 
|  | int alignedEnd = starti; | 
|  | int alignedStart = (starti) + internal::first_aligned(&A0[starti], size - starti); | 
|  | alignedEnd = alignedStart + ((size - alignedStart) / (2 * PacketSize)) * (PacketSize * 2); | 
|  |  | 
|  | // do the non-vectorizable part of the assignment | 
|  | for (int index = starti; index < alignedStart; ++index) { | 
|  | if (Dest::Flags & RowMajorBit) | 
|  | dst.copyCoeff(j, index, src); | 
|  | else | 
|  | dst.copyCoeff(index, j, src); | 
|  | } | 
|  |  | 
|  | // do the vectorizable part of the assignment | 
|  | for (int index = alignedStart; index < alignedEnd; index += PacketSize) { | 
|  | if (Dest::Flags & RowMajorBit) | 
|  | dst.template copyPacket<Src, Aligned, Unaligned>(j, index, src); | 
|  | else | 
|  | dst.template copyPacket<Src, Aligned, Unaligned>(index, j, src); | 
|  | } | 
|  |  | 
|  | // do the non-vectorizable part of the assignment | 
|  | for (int index = alignedEnd; index < size; ++index) { | 
|  | if (Dest::Flags & RowMajorBit) | 
|  | dst.copyCoeff(j, index, src); | 
|  | else | 
|  | dst.copyCoeff(index, j, src); | 
|  | } | 
|  | // dst.col(j).tail(N-j) = src.col(j).tail(N-j); | 
|  | } | 
|  | } | 
|  |  | 
|  | static EIGEN_DONT_INLINE void syr2(gene_matrix& A, gene_vector& X, gene_vector& Y, int N) { | 
|  | // internal::product_selfadjoint_rank2_update<real,0,LowerTriangularBit>(N,A.data(),N, X.data(), 1, Y.data(), 1, | 
|  | // -1); | 
|  | for (int j = 0; j < N; ++j) A.col(j).tail(N - j) += X[j] * Y.tail(N - j) + Y[j] * X.tail(N - j); | 
|  | } | 
|  |  | 
|  | static EIGEN_DONT_INLINE void ger(gene_matrix& A, gene_vector& X, gene_vector& Y, int N) { | 
|  | for (int j = 0; j < N; ++j) A.col(j) += X * Y[j]; | 
|  | } | 
|  |  | 
|  | static EIGEN_DONT_INLINE void rot(gene_vector& A, gene_vector& B, real c, real s, int /*N*/) { | 
|  | internal::apply_rotation_in_the_plane(A, B, JacobiRotation<real>(c, s)); | 
|  | } | 
|  |  | 
|  | static inline void atv_product(gene_matrix& A, gene_vector& B, gene_vector& X, int /*N*/) { | 
|  | X.noalias() = (A.transpose() * B); | 
|  | } | 
|  |  | 
|  | static inline void axpy(real coef, const gene_vector& X, gene_vector& Y, int /*N*/) { Y += coef * X; } | 
|  |  | 
|  | static inline void axpby(real a, const gene_vector& X, real b, gene_vector& Y, int /*N*/) { Y = a * X + b * Y; } | 
|  |  | 
|  | static EIGEN_DONT_INLINE void copy_matrix(const gene_matrix& source, gene_matrix& cible, int /*N*/) { | 
|  | cible = source; | 
|  | } | 
|  |  | 
|  | static EIGEN_DONT_INLINE void copy_vector(const gene_vector& source, gene_vector& cible, int /*N*/) { | 
|  | cible = source; | 
|  | } | 
|  |  | 
|  | static inline void trisolve_lower(const gene_matrix& L, const gene_vector& B, gene_vector& X, int /*N*/) { | 
|  | X = L.template triangularView<Lower>().solve(B); | 
|  | } | 
|  |  | 
|  | static inline void trisolve_lower_matrix(const gene_matrix& L, const gene_matrix& B, gene_matrix& X, int /*N*/) { | 
|  | X = L.template triangularView<Upper>().solve(B); | 
|  | } | 
|  |  | 
|  | static inline void trmm(const gene_matrix& L, const gene_matrix& B, gene_matrix& X, int /*N*/) { | 
|  | X.noalias() = L.template triangularView<Lower>() * B; | 
|  | } | 
|  |  | 
|  | static inline void cholesky(const gene_matrix& X, gene_matrix& C, int /*N*/) { | 
|  | C = X; | 
|  | internal::llt_inplace<real, Lower>::blocked(C); | 
|  | // C = X.llt().matrixL(); | 
|  | //     C = X; | 
|  | //     Cholesky<gene_matrix>::computeInPlace(C); | 
|  | //     Cholesky<gene_matrix>::computeInPlaceBlock(C); | 
|  | } | 
|  |  | 
|  | static inline void lu_decomp(const gene_matrix& X, gene_matrix& C, int /*N*/) { C = X.fullPivLu().matrixLU(); } | 
|  |  | 
|  | static inline void partial_lu_decomp(const gene_matrix& X, gene_matrix& C, int N) { | 
|  | Matrix<DenseIndex, 1, Dynamic> piv(N); | 
|  | DenseIndex nb; | 
|  | C = X; | 
|  | internal::partial_lu_inplace(C, piv, nb); | 
|  | //     C = X.partialPivLu().matrixLU(); | 
|  | } | 
|  |  | 
|  | static inline void tridiagonalization(const gene_matrix& X, gene_matrix& C, int N) { | 
|  | typename Tridiagonalization<gene_matrix>::CoeffVectorType aux(N - 1); | 
|  | C = X; | 
|  | internal::tridiagonalization_inplace(C, aux); | 
|  | } | 
|  |  | 
|  | static inline void hessenberg(const gene_matrix& X, gene_matrix& C, int /*N*/) { | 
|  | C = HessenbergDecomposition<gene_matrix>(X).packedMatrix(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | #endif |