|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | /**  ZHEMV  performs the matrix-vector  operation | 
|  | * | 
|  | *     y := alpha*A*x + beta*y, | 
|  | * | 
|  | *  where alpha and beta are scalars, x and y are n element vectors and | 
|  | *  A is an n by n hermitian matrix. | 
|  | */ | 
|  | EIGEN_BLAS_FUNC(hemv) | 
|  | (const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *px, | 
|  | const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy) { | 
|  | typedef void (*functype)(int, const Scalar *, int, const Scalar *, Scalar *, Scalar); | 
|  | static const functype func[2] = { | 
|  | // array index: UP | 
|  | (Eigen::internal::selfadjoint_matrix_vector_product<Scalar, int, Eigen::ColMajor, Eigen::Upper, false, | 
|  | false>::run), | 
|  | // array index: LO | 
|  | (Eigen::internal::selfadjoint_matrix_vector_product<Scalar, int, Eigen::ColMajor, Eigen::Lower, false, | 
|  | false>::run), | 
|  | }; | 
|  |  | 
|  | const Scalar *a = reinterpret_cast<const Scalar *>(pa); | 
|  | const Scalar *x = reinterpret_cast<const Scalar *>(px); | 
|  | Scalar *y = reinterpret_cast<Scalar *>(py); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); | 
|  | Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); | 
|  |  | 
|  | // check arguments | 
|  | int info = 0; | 
|  | if (UPLO(*uplo) == INVALID) | 
|  | info = 1; | 
|  | else if (*n < 0) | 
|  | info = 2; | 
|  | else if (*lda < std::max(1, *n)) | 
|  | info = 5; | 
|  | else if (*incx == 0) | 
|  | info = 7; | 
|  | else if (*incy == 0) | 
|  | info = 10; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "HEMV ", &info); | 
|  |  | 
|  | if (*n == 0) return; | 
|  |  | 
|  | const Scalar *actual_x = get_compact_vector(x, *n, *incx); | 
|  | Scalar *actual_y = get_compact_vector(y, *n, *incy); | 
|  |  | 
|  | if (beta != Scalar(1)) { | 
|  | if (beta == Scalar(0)) | 
|  | make_vector(actual_y, *n).setZero(); | 
|  | else | 
|  | make_vector(actual_y, *n) *= beta; | 
|  | } | 
|  |  | 
|  | if (alpha != Scalar(0)) { | 
|  | int code = UPLO(*uplo); | 
|  | if (code >= 2 || func[code] == 0) return; | 
|  |  | 
|  | func[code](*n, a, *lda, actual_x, actual_y, alpha); | 
|  | } | 
|  |  | 
|  | if (actual_x != x) delete[] actual_x; | 
|  | if (actual_y != y) delete[] copy_back(actual_y, y, *n, *incy); | 
|  | } | 
|  |  | 
|  | /**  ZHBMV  performs the matrix-vector  operation | 
|  | * | 
|  | *     y := alpha*A*x + beta*y, | 
|  | * | 
|  | *  where alpha and beta are scalars, x and y are n element vectors and | 
|  | *  A is an n by n hermitian band matrix, with k super-diagonals. | 
|  | */ | 
|  | // EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, | 
|  | //                           RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) | 
|  | // { | 
|  | //   return 1; | 
|  | // } | 
|  |  | 
|  | /**  ZHPMV  performs the matrix-vector operation | 
|  | * | 
|  | *     y := alpha*A*x + beta*y, | 
|  | * | 
|  | *  where alpha and beta are scalars, x and y are n element vectors and | 
|  | *  A is an n by n hermitian matrix, supplied in packed form. | 
|  | */ | 
|  | // EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar | 
|  | // *beta, RealScalar *y, int *incy) | 
|  | // { | 
|  | //   return 1; | 
|  | // } | 
|  |  | 
|  | /**  ZHPR    performs the hermitian rank 1 operation | 
|  | * | 
|  | *     A := alpha*x*conjg( x' ) + A, | 
|  | * | 
|  | *  where alpha is a real scalar, x is an n element vector and A is an | 
|  | *  n by n hermitian matrix, supplied in packed form. | 
|  | */ | 
|  | EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap) { | 
|  | typedef void (*functype)(int, Scalar *, const Scalar *, RealScalar); | 
|  | static const functype func[2] = { | 
|  | // array index: UP | 
|  | (Eigen::internal::selfadjoint_packed_rank1_update<Scalar, int, Eigen::ColMajor, Eigen::Upper, false, Conj>::run), | 
|  | // array index: LO | 
|  | (Eigen::internal::selfadjoint_packed_rank1_update<Scalar, int, Eigen::ColMajor, Eigen::Lower, false, Conj>::run), | 
|  | }; | 
|  |  | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  | Scalar *ap = reinterpret_cast<Scalar *>(pap); | 
|  | RealScalar alpha = *palpha; | 
|  |  | 
|  | int info = 0; | 
|  | if (UPLO(*uplo) == INVALID) | 
|  | info = 1; | 
|  | else if (*n < 0) | 
|  | info = 2; | 
|  | else if (*incx == 0) | 
|  | info = 5; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "HPR  ", &info); | 
|  |  | 
|  | if (alpha == Scalar(0)) return; | 
|  |  | 
|  | Scalar *x_cpy = get_compact_vector(x, *n, *incx); | 
|  |  | 
|  | int code = UPLO(*uplo); | 
|  | if (code >= 2 || func[code] == 0) return; | 
|  |  | 
|  | func[code](*n, ap, x_cpy, alpha); | 
|  |  | 
|  | if (x_cpy != x) delete[] x_cpy; | 
|  | } | 
|  |  | 
|  | /**  ZHPR2  performs the hermitian rank 2 operation | 
|  | * | 
|  | *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, | 
|  | * | 
|  | *  where alpha is a scalar, x and y are n element vectors and A is an | 
|  | *  n by n hermitian matrix, supplied in packed form. | 
|  | */ | 
|  | EIGEN_BLAS_FUNC(hpr2) | 
|  | (char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) { | 
|  | typedef void (*functype)(int, Scalar *, const Scalar *, const Scalar *, Scalar); | 
|  | static const functype func[2] = { | 
|  | // array index: UP | 
|  | (Eigen::internal::packed_rank2_update_selector<Scalar, int, Eigen::Upper>::run), | 
|  | // array index: LO | 
|  | (Eigen::internal::packed_rank2_update_selector<Scalar, int, Eigen::Lower>::run), | 
|  | }; | 
|  |  | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  | Scalar *y = reinterpret_cast<Scalar *>(py); | 
|  | Scalar *ap = reinterpret_cast<Scalar *>(pap); | 
|  | Scalar alpha = *reinterpret_cast<Scalar *>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if (UPLO(*uplo) == INVALID) | 
|  | info = 1; | 
|  | else if (*n < 0) | 
|  | info = 2; | 
|  | else if (*incx == 0) | 
|  | info = 5; | 
|  | else if (*incy == 0) | 
|  | info = 7; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "HPR2 ", &info); | 
|  |  | 
|  | if (alpha == Scalar(0)) return; | 
|  |  | 
|  | Scalar *x_cpy = get_compact_vector(x, *n, *incx); | 
|  | Scalar *y_cpy = get_compact_vector(y, *n, *incy); | 
|  |  | 
|  | int code = UPLO(*uplo); | 
|  | if (code >= 2 || func[code] == 0) return; | 
|  |  | 
|  | func[code](*n, ap, x_cpy, y_cpy, alpha); | 
|  |  | 
|  | if (x_cpy != x) delete[] x_cpy; | 
|  | if (y_cpy != y) delete[] y_cpy; | 
|  | } | 
|  |  | 
|  | /**  ZHER   performs the hermitian rank 1 operation | 
|  | * | 
|  | *     A := alpha*x*conjg( x' ) + A, | 
|  | * | 
|  | *  where alpha is a real scalar, x is an n element vector and A is an | 
|  | *  n by n hermitian matrix. | 
|  | */ | 
|  | EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) { | 
|  | typedef void (*functype)(int, Scalar *, int, const Scalar *, const Scalar *, const Scalar &); | 
|  | static const functype func[2] = { | 
|  | // array index: UP | 
|  | (Eigen::selfadjoint_rank1_update<Scalar, int, Eigen::ColMajor, Eigen::Upper, false, Conj>::run), | 
|  | // array index: LO | 
|  | (Eigen::selfadjoint_rank1_update<Scalar, int, Eigen::ColMajor, Eigen::Lower, false, Conj>::run), | 
|  | }; | 
|  |  | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  | Scalar *a = reinterpret_cast<Scalar *>(pa); | 
|  | RealScalar alpha = *reinterpret_cast<RealScalar *>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if (UPLO(*uplo) == INVALID) | 
|  | info = 1; | 
|  | else if (*n < 0) | 
|  | info = 2; | 
|  | else if (*incx == 0) | 
|  | info = 5; | 
|  | else if (*lda < std::max(1, *n)) | 
|  | info = 7; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "HER  ", &info); | 
|  |  | 
|  | if (alpha == RealScalar(0)) return; | 
|  |  | 
|  | Scalar *x_cpy = get_compact_vector(x, *n, *incx); | 
|  |  | 
|  | int code = UPLO(*uplo); | 
|  | if (code >= 2 || func[code] == 0) return; | 
|  |  | 
|  | func[code](*n, a, *lda, x_cpy, x_cpy, alpha); | 
|  |  | 
|  | matrix(a, *n, *n, *lda).diagonal().imag().setZero(); | 
|  |  | 
|  | if (x_cpy != x) delete[] x_cpy; | 
|  | } | 
|  |  | 
|  | /**  ZHER2  performs the hermitian rank 2 operation | 
|  | * | 
|  | *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, | 
|  | * | 
|  | *  where alpha is a scalar, x and y are n element vectors and A is an n | 
|  | *  by n hermitian matrix. | 
|  | */ | 
|  | EIGEN_BLAS_FUNC(her2) | 
|  | (char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, | 
|  | int *lda) { | 
|  | typedef void (*functype)(int, Scalar *, int, const Scalar *, const Scalar *, Scalar); | 
|  | static const functype func[2] = { | 
|  | // array index: UP | 
|  | (Eigen::internal::rank2_update_selector<Scalar, int, Eigen::Upper>::run), | 
|  | // array index: LO | 
|  | (Eigen::internal::rank2_update_selector<Scalar, int, Eigen::Lower>::run), | 
|  | }; | 
|  |  | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  | Scalar *y = reinterpret_cast<Scalar *>(py); | 
|  | Scalar *a = reinterpret_cast<Scalar *>(pa); | 
|  | Scalar alpha = *reinterpret_cast<Scalar *>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if (UPLO(*uplo) == INVALID) | 
|  | info = 1; | 
|  | else if (*n < 0) | 
|  | info = 2; | 
|  | else if (*incx == 0) | 
|  | info = 5; | 
|  | else if (*incy == 0) | 
|  | info = 7; | 
|  | else if (*lda < std::max(1, *n)) | 
|  | info = 9; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "HER2 ", &info); | 
|  |  | 
|  | if (alpha == Scalar(0)) return; | 
|  |  | 
|  | Scalar *x_cpy = get_compact_vector(x, *n, *incx); | 
|  | Scalar *y_cpy = get_compact_vector(y, *n, *incy); | 
|  |  | 
|  | int code = UPLO(*uplo); | 
|  | if (code >= 2 || func[code] == 0) return; | 
|  |  | 
|  | func[code](*n, a, *lda, x_cpy, y_cpy, alpha); | 
|  |  | 
|  | matrix(a, *n, *n, *lda).diagonal().imag().setZero(); | 
|  |  | 
|  | if (x_cpy != x) delete[] x_cpy; | 
|  | if (y_cpy != y) delete[] y_cpy; | 
|  | } | 
|  |  | 
|  | /**  ZGERU  performs the rank 1 operation | 
|  | * | 
|  | *     A := alpha*x*y' + A, | 
|  | * | 
|  | *  where alpha is a scalar, x is an m element vector, y is an n element | 
|  | *  vector and A is an m by n matrix. | 
|  | */ | 
|  | EIGEN_BLAS_FUNC(geru) | 
|  | (int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  | Scalar *y = reinterpret_cast<Scalar *>(py); | 
|  | Scalar *a = reinterpret_cast<Scalar *>(pa); | 
|  | Scalar alpha = *reinterpret_cast<Scalar *>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if (*m < 0) | 
|  | info = 1; | 
|  | else if (*n < 0) | 
|  | info = 2; | 
|  | else if (*incx == 0) | 
|  | info = 5; | 
|  | else if (*incy == 0) | 
|  | info = 7; | 
|  | else if (*lda < std::max(1, *m)) | 
|  | info = 9; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "GERU ", &info); | 
|  |  | 
|  | if (alpha == Scalar(0)) return; | 
|  |  | 
|  | Scalar *x_cpy = get_compact_vector(x, *m, *incx); | 
|  | Scalar *y_cpy = get_compact_vector(y, *n, *incy); | 
|  |  | 
|  | Eigen::internal::general_rank1_update<Scalar, int, Eigen::ColMajor, false, false>::run(*m, *n, a, *lda, x_cpy, y_cpy, | 
|  | alpha); | 
|  |  | 
|  | if (x_cpy != x) delete[] x_cpy; | 
|  | if (y_cpy != y) delete[] y_cpy; | 
|  | } | 
|  |  | 
|  | /**  ZGERC  performs the rank 1 operation | 
|  | * | 
|  | *     A := alpha*x*conjg( y' ) + A, | 
|  | * | 
|  | *  where alpha is a scalar, x is an m element vector, y is an n element | 
|  | *  vector and A is an m by n matrix. | 
|  | */ | 
|  | EIGEN_BLAS_FUNC(gerc) | 
|  | (int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { | 
|  | Scalar *x = reinterpret_cast<Scalar *>(px); | 
|  | Scalar *y = reinterpret_cast<Scalar *>(py); | 
|  | Scalar *a = reinterpret_cast<Scalar *>(pa); | 
|  | Scalar alpha = *reinterpret_cast<Scalar *>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if (*m < 0) | 
|  | info = 1; | 
|  | else if (*n < 0) | 
|  | info = 2; | 
|  | else if (*incx == 0) | 
|  | info = 5; | 
|  | else if (*incy == 0) | 
|  | info = 7; | 
|  | else if (*lda < std::max(1, *m)) | 
|  | info = 9; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "GERC ", &info); | 
|  |  | 
|  | if (alpha == Scalar(0)) return; | 
|  |  | 
|  | Scalar *x_cpy = get_compact_vector(x, *m, *incx); | 
|  | Scalar *y_cpy = get_compact_vector(y, *n, *incy); | 
|  |  | 
|  | Eigen::internal::general_rank1_update<Scalar, int, Eigen::ColMajor, false, Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, | 
|  | alpha); | 
|  |  | 
|  | if (x_cpy != x) delete[] x_cpy; | 
|  | if (y_cpy != y) delete[] y_cpy; | 
|  | } |