|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "common.h" | 
|  | #include <Eigen/LU> | 
|  |  | 
|  | // computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges | 
|  | EIGEN_LAPACK_FUNC(getrf)(int *m, int *n, RealScalar *pa, int *lda, int *ipiv, int *info) { | 
|  | *info = 0; | 
|  | if (*m < 0) | 
|  | *info = -1; | 
|  | else if (*n < 0) | 
|  | *info = -2; | 
|  | else if (*lda < std::max(1, *m)) | 
|  | *info = -4; | 
|  | if (*info != 0) { | 
|  | int e = -*info; | 
|  | return xerbla_(SCALAR_SUFFIX_UP "GETRF", &e); | 
|  | } | 
|  |  | 
|  | if (*m == 0 || *n == 0) return; | 
|  |  | 
|  | Scalar *a = reinterpret_cast<Scalar *>(pa); | 
|  | int nb_transpositions; | 
|  | int ret = int(Eigen::internal::partial_lu_impl<Scalar, Eigen::ColMajor, int>::blocked_lu(*m, *n, a, *lda, ipiv, | 
|  | nb_transpositions)); | 
|  |  | 
|  | for (int i = 0; i < std::min(*m, *n); ++i) ipiv[i]++; | 
|  |  | 
|  | if (ret >= 0) *info = ret + 1; | 
|  | } | 
|  |  | 
|  | // GETRS solves a system of linear equations | 
|  | //     A * X = B  or  A' * X = B | 
|  | //   with a general N-by-N matrix A using the LU factorization computed  by GETRF | 
|  | EIGEN_LAPACK_FUNC(getrs) | 
|  | (char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info) { | 
|  | *info = 0; | 
|  | if (OP(*trans) == INVALID) | 
|  | *info = -1; | 
|  | else if (*n < 0) | 
|  | *info = -2; | 
|  | else if (*nrhs < 0) | 
|  | *info = -3; | 
|  | else if (*lda < std::max(1, *n)) | 
|  | *info = -5; | 
|  | else if (*ldb < std::max(1, *n)) | 
|  | *info = -8; | 
|  | if (*info != 0) { | 
|  | int e = -*info; | 
|  | return xerbla_(SCALAR_SUFFIX_UP "GETRS", &e); | 
|  | } | 
|  |  | 
|  | Scalar *a = reinterpret_cast<Scalar *>(pa); | 
|  | Scalar *b = reinterpret_cast<Scalar *>(pb); | 
|  | MatrixType lu(a, *n, *n, *lda); | 
|  | MatrixType B(b, *n, *nrhs, *ldb); | 
|  |  | 
|  | using Eigen::UnitLower; | 
|  | using Eigen::Upper; | 
|  | for (int i = 0; i < *n; ++i) ipiv[i]--; | 
|  | if (OP(*trans) == NOTR) { | 
|  | B = PivotsType(ipiv, *n) * B; | 
|  | lu.triangularView<UnitLower>().solveInPlace(B); | 
|  | lu.triangularView<Upper>().solveInPlace(B); | 
|  | } else if (OP(*trans) == TR) { | 
|  | lu.triangularView<Upper>().transpose().solveInPlace(B); | 
|  | lu.triangularView<UnitLower>().transpose().solveInPlace(B); | 
|  | B = PivotsType(ipiv, *n).transpose() * B; | 
|  | } else if (OP(*trans) == ADJ) { | 
|  | lu.triangularView<Upper>().adjoint().solveInPlace(B); | 
|  | lu.triangularView<UnitLower>().adjoint().solveInPlace(B); | 
|  | B = PivotsType(ipiv, *n).transpose() * B; | 
|  | } | 
|  | for (int i = 0; i < *n; ++i) ipiv[i]++; | 
|  | } |