|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "lapack_common.h" | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | #if ISCOMPLEX | 
|  | #define EIGEN_LAPACK_ARG_IF_COMPLEX(X) X, | 
|  | #else | 
|  | #define EIGEN_LAPACK_ARG_IF_COMPLEX(X) | 
|  | #endif | 
|  |  | 
|  | // computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer | 
|  | EIGEN_LAPACK_FUNC(gesdd) | 
|  | (char *jobz, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, | 
|  | Scalar * /*work*/, int *lwork, EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int * /*iwork*/, int *info) { | 
|  | // TODO exploit the work buffer | 
|  | bool query_size = *lwork == -1; | 
|  | int diag_size = (std::min)(*m, *n); | 
|  |  | 
|  | *info = 0; | 
|  | if (*jobz != 'A' && *jobz != 'S' && *jobz != 'O' && *jobz != 'N') | 
|  | *info = -1; | 
|  | else if (*m < 0) | 
|  | *info = -2; | 
|  | else if (*n < 0) | 
|  | *info = -3; | 
|  | else if (*lda < std::max(1, *m)) | 
|  | *info = -5; | 
|  | else if (*lda < std::max(1, *m)) | 
|  | *info = -8; | 
|  | else if (*ldu < 1 || (*jobz == 'A' && *ldu < *m) || (*jobz == 'O' && *m < *n && *ldu < *m)) | 
|  | *info = -8; | 
|  | else if (*ldvt < 1 || (*jobz == 'A' && *ldvt < *n) || (*jobz == 'S' && *ldvt < diag_size) || | 
|  | (*jobz == 'O' && *m >= *n && *ldvt < *n)) | 
|  | *info = -10; | 
|  |  | 
|  | if (*info != 0) { | 
|  | int e = -*info; | 
|  | return xerbla_(SCALAR_SUFFIX_UP "GESDD ", &e); | 
|  | } | 
|  |  | 
|  | if (query_size) { | 
|  | *lwork = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (*n == 0 || *m == 0) return; | 
|  |  | 
|  | PlainMatrixType mat(*m, *n); | 
|  | mat = matrix(a, *m, *n, *lda); | 
|  |  | 
|  | int option = *jobz == 'A'   ? Eigen::ComputeFullU | Eigen::ComputeFullV | 
|  | : *jobz == 'S' ? Eigen::ComputeThinU | Eigen::ComputeThinV | 
|  | : *jobz == 'O' ? Eigen::ComputeThinU | Eigen::ComputeThinV | 
|  | : 0; | 
|  |  | 
|  | Eigen::BDCSVD<PlainMatrixType> svd(mat, option); | 
|  |  | 
|  | make_vector(s, diag_size) = svd.singularValues().head(diag_size); | 
|  |  | 
|  | if (*jobz == 'A') { | 
|  | matrix(u, *m, *m, *ldu) = svd.matrixU(); | 
|  | matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint(); | 
|  | } else if (*jobz == 'S') { | 
|  | matrix(u, *m, diag_size, *ldu) = svd.matrixU(); | 
|  | matrix(vt, diag_size, *n, *ldvt) = svd.matrixV().adjoint(); | 
|  | } else if (*jobz == 'O' && *m >= *n) { | 
|  | matrix(a, *m, *n, *lda) = svd.matrixU(); | 
|  | matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint(); | 
|  | } else if (*jobz == 'O') { | 
|  | matrix(u, *m, *m, *ldu) = svd.matrixU(); | 
|  | matrix(a, diag_size, *n, *lda) = svd.matrixV().adjoint(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm | 
|  | EIGEN_LAPACK_FUNC(gesvd) | 
|  | (char *jobu, char *jobv, int *m, int *n, Scalar *a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, | 
|  | Scalar * /*work*/, int *lwork, EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar * /*rwork*/) int *info) { | 
|  | // TODO exploit the work buffer | 
|  | bool query_size = *lwork == -1; | 
|  | int diag_size = (std::min)(*m, *n); | 
|  |  | 
|  | *info = 0; | 
|  | if (*jobu != 'A' && *jobu != 'S' && *jobu != 'O' && *jobu != 'N') | 
|  | *info = -1; | 
|  | else if ((*jobv != 'A' && *jobv != 'S' && *jobv != 'O' && *jobv != 'N') || (*jobu == 'O' && *jobv == 'O')) | 
|  | *info = -2; | 
|  | else if (*m < 0) | 
|  | *info = -3; | 
|  | else if (*n < 0) | 
|  | *info = -4; | 
|  | else if (*lda < std::max(1, *m)) | 
|  | *info = -6; | 
|  | else if (*ldu < 1 || ((*jobu == 'A' || *jobu == 'S') && *ldu < *m)) | 
|  | *info = -9; | 
|  | else if (*ldvt < 1 || (*jobv == 'A' && *ldvt < *n) || (*jobv == 'S' && *ldvt < diag_size)) | 
|  | *info = -11; | 
|  |  | 
|  | if (*info != 0) { | 
|  | int e = -*info; | 
|  | return xerbla_(SCALAR_SUFFIX_UP "GESVD ", &e); | 
|  | } | 
|  |  | 
|  | if (query_size) { | 
|  | *lwork = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (*n == 0 || *m == 0) return; | 
|  |  | 
|  | PlainMatrixType mat(*m, *n); | 
|  | mat = matrix(a, *m, *n, *lda); | 
|  |  | 
|  | int option = (*jobu == 'A'                   ? Eigen::ComputeFullU | 
|  | : *jobu == 'S' || *jobu == 'O' ? Eigen::ComputeThinU | 
|  | : 0) | | 
|  | (*jobv == 'A'                   ? Eigen::ComputeFullV | 
|  | : *jobv == 'S' || *jobv == 'O' ? Eigen::ComputeThinV | 
|  | : 0); | 
|  |  | 
|  | Eigen::JacobiSVD<PlainMatrixType> svd(mat, option); | 
|  |  | 
|  | make_vector(s, diag_size) = svd.singularValues().head(diag_size); | 
|  | { | 
|  | if (*jobu == 'A') | 
|  | matrix(u, *m, *m, *ldu) = svd.matrixU(); | 
|  | else if (*jobu == 'S') | 
|  | matrix(u, *m, diag_size, *ldu) = svd.matrixU(); | 
|  | else if (*jobu == 'O') | 
|  | matrix(a, *m, diag_size, *lda) = svd.matrixU(); | 
|  | } | 
|  | { | 
|  | if (*jobv == 'A') | 
|  | matrix(vt, *n, *n, *ldvt) = svd.matrixV().adjoint(); | 
|  | else if (*jobv == 'S') | 
|  | matrix(vt, diag_size, *n, *ldvt) = svd.matrixV().adjoint(); | 
|  | else if (*jobv == 'O') | 
|  | matrix(a, diag_size, *n, *lda) = svd.matrixV().adjoint(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef EIGEN_LAPACK_ARG_IF_COMPLEX |