|  | #define EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS | 
|  | #include "sparse_solver.h" | 
|  |  | 
|  | #if defined(DEBUG) | 
|  | #undef DEBUG | 
|  | #endif | 
|  |  | 
|  | #include <Eigen/AccelerateSupport> | 
|  |  | 
|  | template <typename MatrixType, typename DenseMat> | 
|  | int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | int rows = internal::random<int>(1, maxRows); | 
|  | int cols = internal::random<int>(1, maxCols); | 
|  | double density = (std::max)(8.0 / (rows * cols), 0.01); | 
|  |  | 
|  | A.resize(rows, cols); | 
|  | dA.resize(rows, cols); | 
|  | initSparse<Scalar>(density, dA, A, ForceNonZeroDiag); | 
|  | A.makeCompressed(); | 
|  | return rows; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, typename DenseMat> | 
|  | int generate_sparse_square_symmetric_problem(MatrixType& A, DenseMat& dA, int maxSize = 300) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | int rows = internal::random<int>(1, maxSize); | 
|  | int cols = rows; | 
|  | double density = (std::max)(8.0 / (rows * cols), 0.01); | 
|  |  | 
|  | A.resize(rows, cols); | 
|  | dA.resize(rows, cols); | 
|  | initSparse<Scalar>(density, dA, A, ForceNonZeroDiag); | 
|  | dA = dA * dA.transpose(); | 
|  | A = A * A.transpose(); | 
|  | A.makeCompressed(); | 
|  | return rows; | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Solver> | 
|  | void test_accelerate_ldlt() { | 
|  | typedef SparseMatrix<Scalar> MatrixType; | 
|  | typedef Matrix<Scalar, Dynamic, 1> DenseVector; | 
|  |  | 
|  | MatrixType A; | 
|  | Matrix<Scalar, Dynamic, Dynamic> dA; | 
|  |  | 
|  | generate_sparse_square_symmetric_problem(A, dA); | 
|  |  | 
|  | DenseVector b = DenseVector::Random(A.rows()); | 
|  |  | 
|  | Solver solver; | 
|  | solver.compute(A); | 
|  |  | 
|  | if (solver.info() != Success) { | 
|  | std::cerr << "sparse LDLT factorization failed\n"; | 
|  | exit(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DenseVector x = solver.solve(b); | 
|  |  | 
|  | if (solver.info() != Success) { | 
|  | std::cerr << "sparse LDLT factorization failed\n"; | 
|  | exit(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compare with a dense solver | 
|  | DenseVector refX = dA.ldlt().solve(b); | 
|  | VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>())); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Solver> | 
|  | void test_accelerate_llt() { | 
|  | typedef SparseMatrix<Scalar> MatrixType; | 
|  | typedef Matrix<Scalar, Dynamic, 1> DenseVector; | 
|  |  | 
|  | MatrixType A; | 
|  | Matrix<Scalar, Dynamic, Dynamic> dA; | 
|  |  | 
|  | generate_sparse_square_symmetric_problem(A, dA); | 
|  |  | 
|  | DenseVector b = DenseVector::Random(A.rows()); | 
|  |  | 
|  | Solver solver; | 
|  | solver.compute(A); | 
|  |  | 
|  | if (solver.info() != Success) { | 
|  | std::cerr << "sparse LLT factorization failed\n"; | 
|  | exit(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DenseVector x = solver.solve(b); | 
|  |  | 
|  | if (solver.info() != Success) { | 
|  | std::cerr << "sparse LLT factorization failed\n"; | 
|  | exit(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compare with a dense solver | 
|  | DenseVector refX = dA.llt().solve(b); | 
|  | VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>())); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Solver> | 
|  | void test_accelerate_qr() { | 
|  | typedef SparseMatrix<Scalar> MatrixType; | 
|  | typedef Matrix<Scalar, Dynamic, 1> DenseVector; | 
|  |  | 
|  | MatrixType A; | 
|  | Matrix<Scalar, Dynamic, Dynamic> dA; | 
|  |  | 
|  | generate_sparse_rectangular_problem(A, dA); | 
|  |  | 
|  | DenseVector b = DenseVector::Random(A.rows()); | 
|  |  | 
|  | Solver solver; | 
|  | solver.compute(A); | 
|  |  | 
|  | if (solver.info() != Success) { | 
|  | std::cerr << "sparse QR factorization failed\n"; | 
|  | exit(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DenseVector x = solver.solve(b); | 
|  |  | 
|  | if (solver.info() != Success) { | 
|  | std::cerr << "sparse QR factorization failed\n"; | 
|  | exit(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compare with a dense solver | 
|  | DenseVector refX = dA.colPivHouseholderQr().solve(b); | 
|  | VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>())); | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void run_tests() { | 
|  | typedef SparseMatrix<Scalar> MatrixType; | 
|  |  | 
|  | test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Lower> >(); | 
|  | test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Lower> >(); | 
|  | test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Lower> >(); | 
|  | test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Lower> >(); | 
|  |  | 
|  | test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Upper> >(); | 
|  | test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Upper> >(); | 
|  | test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Upper> >(); | 
|  | test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Upper> >(); | 
|  |  | 
|  | test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Lower> >(); | 
|  |  | 
|  | test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Upper> >(); | 
|  |  | 
|  | test_accelerate_qr<Scalar, AccelerateQR<MatrixType> >(); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(accelerate_support) { | 
|  | CALL_SUBTEST_1(run_tests<float>()); | 
|  | CALL_SUBTEST_2(run_tests<double>()); | 
|  | } |