|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include <sstream> | 
|  |  | 
|  | #ifdef EIGEN_TEST_MAX_SIZE | 
|  | #undef EIGEN_TEST_MAX_SIZE | 
|  | #endif | 
|  |  | 
|  | #define EIGEN_TEST_MAX_SIZE 50 | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_1 | 
|  | #include "cholesky.cpp" | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_2 | 
|  | #include "lu.cpp" | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_3 | 
|  | #include "qr.cpp" | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_4 | 
|  | #include "qr_colpivoting.cpp" | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_5 | 
|  | #include "qr_fullpivoting.cpp" | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_6 | 
|  | #include "eigensolver_selfadjoint.cpp" | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_7 | 
|  | #include "eigensolver_generic.cpp" | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_8 | 
|  | #include "eigensolver_generalized_real.cpp" | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_9 | 
|  | #include "jacobisvd.cpp" | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_10 | 
|  | #include "bdcsvd.cpp" | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_11 | 
|  | #include "simplicial_cholesky.cpp" | 
|  | #endif | 
|  |  | 
|  | #include <Eigen/Dense> | 
|  |  | 
|  | #undef min | 
|  | #undef max | 
|  | #undef isnan | 
|  | #undef isinf | 
|  | #undef isfinite | 
|  | #undef I | 
|  |  | 
|  | #include <boost/serialization/nvp.hpp> | 
|  | #include <boost/multiprecision/cpp_dec_float.hpp> | 
|  | #include <boost/multiprecision/number.hpp> | 
|  | #include <boost/math/special_functions.hpp> | 
|  | #include <boost/math/complex.hpp> | 
|  |  | 
|  | typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<100>, boost::multiprecision::et_on> Real; | 
|  |  | 
|  | namespace Eigen { | 
|  | template <> | 
|  | struct NumTraits<Real> : GenericNumTraits<Real> { | 
|  | static inline Real dummy_precision() { return 1e-50; } | 
|  | }; | 
|  |  | 
|  | template <typename T1, typename T2, typename T3, typename T4, typename T5> | 
|  | struct NumTraits<boost::multiprecision::detail::expression<T1, T2, T3, T4, T5> > : NumTraits<Real> {}; | 
|  |  | 
|  | template <> | 
|  | Real test_precision<Real>() { | 
|  | return 1e-50; | 
|  | } | 
|  |  | 
|  | // needed in C++93 mode where number does not support explicit cast. | 
|  | namespace internal { | 
|  | template <typename NewType> | 
|  | struct cast_impl<Real, NewType> { | 
|  | static inline NewType run(const Real& x) { return x.template convert_to<NewType>(); } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct cast_impl<Real, std::complex<Real> > { | 
|  | static inline std::complex<Real> run(const Real& x) { return std::complex<Real>(x); } | 
|  | }; | 
|  | }  // namespace internal | 
|  | }  // namespace Eigen | 
|  |  | 
|  | namespace boost { | 
|  | namespace multiprecision { | 
|  | // to make ADL works as expected: | 
|  | using boost::math::copysign; | 
|  | using boost::math::hypot; | 
|  | using boost::math::isfinite; | 
|  | using boost::math::isinf; | 
|  | using boost::math::isnan; | 
|  |  | 
|  | // The following is needed for std::complex<Real>: | 
|  | Real fabs(const Real& a) { return abs EIGEN_NOT_A_MACRO(a); } | 
|  | Real fmax(const Real& a, const Real& b) { | 
|  | using std::max; | 
|  | return max(a, b); | 
|  | } | 
|  |  | 
|  | // some specialization for the unit tests: | 
|  | inline bool test_isMuchSmallerThan(const Real& a, const Real& b) { | 
|  | return internal::isMuchSmallerThan(a, b, test_precision<Real>()); | 
|  | } | 
|  |  | 
|  | inline bool test_isApprox(const Real& a, const Real& b) { return internal::isApprox(a, b, test_precision<Real>()); } | 
|  |  | 
|  | inline bool test_isApproxOrLessThan(const Real& a, const Real& b) { | 
|  | return internal::isApproxOrLessThan(a, b, test_precision<Real>()); | 
|  | } | 
|  |  | 
|  | Real get_test_precision(const Real&) { return test_precision<Real>(); } | 
|  |  | 
|  | Real test_relative_error(const Real& a, const Real& b) { | 
|  | using Eigen::numext::abs2; | 
|  | return sqrt(abs2<Real>(a - b) / Eigen::numext::mini<Real>(abs2(a), abs2(b))); | 
|  | } | 
|  | }  // namespace multiprecision | 
|  | }  // namespace boost | 
|  |  | 
|  | namespace Eigen {} | 
|  |  | 
|  | EIGEN_DECLARE_TEST(boostmultiprec) { | 
|  | typedef Matrix<Real, Dynamic, Dynamic> Mat; | 
|  | typedef Matrix<std::complex<Real>, Dynamic, Dynamic> MatC; | 
|  |  | 
|  | std::cout << "NumTraits<Real>::epsilon()         = " << NumTraits<Real>::epsilon() << std::endl; | 
|  | std::cout << "NumTraits<Real>::dummy_precision() = " << NumTraits<Real>::dummy_precision() << std::endl; | 
|  | std::cout << "NumTraits<Real>::lowest()          = " << NumTraits<Real>::lowest() << std::endl; | 
|  | std::cout << "NumTraits<Real>::highest()         = " << NumTraits<Real>::highest() << std::endl; | 
|  | std::cout << "NumTraits<Real>::digits10()        = " << NumTraits<Real>::digits10() << std::endl; | 
|  | std::cout << "NumTraits<Real>::max_digits10()    = " << NumTraits<Real>::max_digits10() << std::endl; | 
|  |  | 
|  | // check stream output | 
|  | { | 
|  | Mat A(10, 10); | 
|  | A.setRandom(); | 
|  | std::stringstream ss; | 
|  | ss << A; | 
|  | } | 
|  | { | 
|  | MatC A(10, 10); | 
|  | A.setRandom(); | 
|  | std::stringstream ss; | 
|  | ss << A; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | int s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE); | 
|  |  | 
|  | CALL_SUBTEST_1(cholesky(Mat(s, s))); | 
|  |  | 
|  | CALL_SUBTEST_2(lu_non_invertible<Mat>()); | 
|  | CALL_SUBTEST_2(lu_invertible<Mat>()); | 
|  | CALL_SUBTEST_2(lu_non_invertible<MatC>()); | 
|  | CALL_SUBTEST_2(lu_invertible<MatC>()); | 
|  |  | 
|  | CALL_SUBTEST_3( | 
|  | qr(Mat(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_3(qr_invertible<Mat>()); | 
|  |  | 
|  | CALL_SUBTEST_4(qr<Mat>()); | 
|  | CALL_SUBTEST_4(cod<Mat>()); | 
|  | CALL_SUBTEST_4(qr_invertible<Mat>()); | 
|  |  | 
|  | CALL_SUBTEST_5(qr<Mat>()); | 
|  | CALL_SUBTEST_5(qr_invertible<Mat>()); | 
|  |  | 
|  | CALL_SUBTEST_6(selfadjointeigensolver(Mat(s, s))); | 
|  |  | 
|  | CALL_SUBTEST_7(eigensolver(Mat(s, s))); | 
|  |  | 
|  | CALL_SUBTEST_8(generalized_eigensolver_real(Mat(s, s))); | 
|  |  | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_9( | 
|  | (jacobisvd_thin_options(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE / 4, EIGEN_TEST_MAX_SIZE), | 
|  | internal::random<int>(EIGEN_TEST_MAX_SIZE / 4, EIGEN_TEST_MAX_SIZE / 2))))); | 
|  | CALL_SUBTEST_9( | 
|  | (jacobisvd_full_options(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE / 4, EIGEN_TEST_MAX_SIZE), | 
|  | internal::random<int>(EIGEN_TEST_MAX_SIZE / 4, EIGEN_TEST_MAX_SIZE / 2))))); | 
|  | CALL_SUBTEST_10((bdcsvd_thin_options(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE / 4, EIGEN_TEST_MAX_SIZE), | 
|  | internal::random<int>(EIGEN_TEST_MAX_SIZE / 4, EIGEN_TEST_MAX_SIZE / 2))))); | 
|  | CALL_SUBTEST_10((bdcsvd_full_options(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE / 4, EIGEN_TEST_MAX_SIZE), | 
|  | internal::random<int>(EIGEN_TEST_MAX_SIZE / 4, EIGEN_TEST_MAX_SIZE / 2))))); | 
|  |  | 
|  | CALL_SUBTEST_11((test_simplicial_cholesky_T<Real, int, ColMajor>())); | 
|  | } |