|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <limits> | 
|  | #include <Eigen/Eigenvalues> | 
|  |  | 
|  | template <typename EigType, typename MatType> | 
|  | void check_eigensolver_for_given_mat(const EigType& eig, const MatType& a) { | 
|  | typedef typename NumTraits<typename MatType::Scalar>::Real RealScalar; | 
|  | typedef Matrix<RealScalar, MatType::RowsAtCompileTime, 1> RealVectorType; | 
|  | typedef typename std::complex<RealScalar> Complex; | 
|  | Index n = a.rows(); | 
|  | VERIFY_IS_EQUAL(eig.info(), Success); | 
|  | VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()); | 
|  | VERIFY_IS_APPROX(a.template cast<Complex>() * eig.eigenvectors(), | 
|  | eig.eigenvectors() * eig.eigenvalues().asDiagonal()); | 
|  | VERIFY_IS_APPROX(eig.eigenvectors().colwise().norm(), RealVectorType::Ones(n).transpose()); | 
|  | VERIFY_IS_APPROX(a.eigenvalues(), eig.eigenvalues()); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void eigensolver(const MatrixType& m) { | 
|  | /* this test covers the following files: | 
|  | EigenSolver.h | 
|  | */ | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef typename std::complex<RealScalar> Complex; | 
|  |  | 
|  | MatrixType a = MatrixType::Random(rows, cols); | 
|  | MatrixType a1 = MatrixType::Random(rows, cols); | 
|  | MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; | 
|  |  | 
|  | EigenSolver<MatrixType> ei0(symmA); | 
|  | VERIFY_IS_EQUAL(ei0.info(), Success); | 
|  | VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); | 
|  | VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), | 
|  | (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); | 
|  |  | 
|  | EigenSolver<MatrixType> ei1(a); | 
|  | CALL_SUBTEST(check_eigensolver_for_given_mat(ei1, a)); | 
|  |  | 
|  | EigenSolver<MatrixType> ei2; | 
|  | ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); | 
|  | VERIFY_IS_EQUAL(ei2.info(), Success); | 
|  | VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); | 
|  | VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); | 
|  | if (rows > 2) { | 
|  | ei2.setMaxIterations(1).compute(a); | 
|  | VERIFY_IS_EQUAL(ei2.info(), NoConvergence); | 
|  | VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); | 
|  | } | 
|  |  | 
|  | EigenSolver<MatrixType> eiNoEivecs(a, false); | 
|  | VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); | 
|  | VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); | 
|  | VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix()); | 
|  |  | 
|  | MatrixType id = MatrixType::Identity(rows, cols); | 
|  | VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); | 
|  |  | 
|  | if (rows > 2 && rows < 20) { | 
|  | // Test matrix with NaN | 
|  | a(0, 0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); | 
|  | EigenSolver<MatrixType> eiNaN(a); | 
|  | VERIFY_IS_NOT_EQUAL(eiNaN.info(), Success); | 
|  | } | 
|  |  | 
|  | // regression test for bug 1098 | 
|  | { | 
|  | EigenSolver<MatrixType> eig(a.adjoint() * a); | 
|  | eig.compute(a.adjoint() * a); | 
|  | } | 
|  |  | 
|  | // regression test for bug 478 | 
|  | { | 
|  | a.setZero(); | 
|  | EigenSolver<MatrixType> ei3(a); | 
|  | VERIFY_IS_EQUAL(ei3.info(), Success); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(), RealScalar(1)); | 
|  | VERIFY((ei3.eigenvectors().transpose() * ei3.eigenvectors().transpose()).eval().isIdentity()); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void eigensolver_verify_assert(const MatrixType& m) { | 
|  | EigenSolver<MatrixType> eig; | 
|  | VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
|  | VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); | 
|  | VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix()); | 
|  | VERIFY_RAISES_ASSERT(eig.eigenvalues()); | 
|  |  | 
|  | MatrixType a = MatrixType::Random(m.rows(), m.cols()); | 
|  | eig.compute(a, false); | 
|  | VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
|  | VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); | 
|  | } | 
|  |  | 
|  | template <typename CoeffType> | 
|  | Matrix<typename CoeffType::Scalar, Dynamic, Dynamic> make_companion(const CoeffType& coeffs) { | 
|  | Index n = coeffs.size() - 1; | 
|  | Matrix<typename CoeffType::Scalar, Dynamic, Dynamic> res(n, n); | 
|  | res.setZero(); | 
|  | res.row(0) = -coeffs.tail(n) / coeffs(0); | 
|  | res.diagonal(-1).setOnes(); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void eigensolver_generic_extra() { | 
|  | { | 
|  | // regression test for bug 793 | 
|  | MatrixXd a(3, 3); | 
|  | a << 0, 0, 1, 1, 1, 1, 1, 1e+200, 1; | 
|  | Eigen::EigenSolver<MatrixXd> eig(a); | 
|  | double scale = 1e-200;  // scale to avoid overflow during the comparisons | 
|  | VERIFY_IS_APPROX(a * eig.pseudoEigenvectors() * scale, | 
|  | eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix() * scale); | 
|  | VERIFY_IS_APPROX(a * eig.eigenvectors() * scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal() * scale); | 
|  | } | 
|  | { | 
|  | // check a case where all eigenvalues are null. | 
|  | MatrixXd a(2, 2); | 
|  | a << 1, 1, -1, -1; | 
|  | Eigen::EigenSolver<MatrixXd> eig(a); | 
|  | VERIFY_IS_APPROX(eig.pseudoEigenvectors().squaredNorm(), 2.); | 
|  | VERIFY_IS_APPROX((a * eig.pseudoEigenvectors()).norm() + 1., 1.); | 
|  | VERIFY_IS_APPROX((eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()).norm() + 1., 1.); | 
|  | VERIFY_IS_APPROX((a * eig.eigenvectors()).norm() + 1., 1.); | 
|  | VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm() + 1., 1.); | 
|  | } | 
|  |  | 
|  | // regression test for bug 933 | 
|  | { | 
|  | { | 
|  | VectorXd coeffs(5); | 
|  | coeffs << 1, -3, -175, -225, 2250; | 
|  | MatrixXd C = make_companion(coeffs); | 
|  | EigenSolver<MatrixXd> eig(C); | 
|  | CALL_SUBTEST(check_eigensolver_for_given_mat(eig, C)); | 
|  | } | 
|  | { | 
|  | // this test is tricky because it requires high accuracy in smallest eigenvalues | 
|  | VectorXd coeffs(5); | 
|  | coeffs << 6.154671e-15, -1.003870e-10, -9.819570e-01, 3.995715e+03, 2.211511e+08; | 
|  | MatrixXd C = make_companion(coeffs); | 
|  | EigenSolver<MatrixXd> eig(C); | 
|  | CALL_SUBTEST(check_eigensolver_for_given_mat(eig, C)); | 
|  | Index n = C.rows(); | 
|  | for (Index i = 0; i < n; ++i) { | 
|  | typedef std::complex<double> Complex; | 
|  | MatrixXcd ac = C.cast<Complex>(); | 
|  | ac.diagonal().array() -= eig.eigenvalues()(i); | 
|  | VectorXd sv = ac.jacobiSvd().singularValues(); | 
|  | // comparing to sv(0) is not enough here to catch the "bug", | 
|  | // the hard-coded 1.0 is important! | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(sv(n - 1), 1.0); | 
|  | } | 
|  | } | 
|  | } | 
|  | // regression test for bug 1557 | 
|  | { | 
|  | // this test is interesting because it contains zeros on the diagonal. | 
|  | MatrixXd A_bug1557(3, 3); | 
|  | A_bug1557 << 0, 0, 0, 1, 0, 0.5887907064808635127, 0, 1, 0; | 
|  | EigenSolver<MatrixXd> eig(A_bug1557); | 
|  | CALL_SUBTEST(check_eigensolver_for_given_mat(eig, A_bug1557)); | 
|  | } | 
|  |  | 
|  | // regression test for bug 1174 | 
|  | { | 
|  | Index n = 12; | 
|  | MatrixXf A_bug1174(n, n); | 
|  | A_bug1174 << 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432, 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, | 
|  | 786432, 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432, 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, | 
|  | 786432, 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, 0, 262144, 262144, 0, 0, | 
|  | 262144, 262144, 262144, 262144, 262144, 262144, 0, 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, | 
|  | 262144, 262144, 0, 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, 0, 262144, | 
|  | 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, 0, 262144, 262144, 0, 0, 262144, 262144, | 
|  | 262144, 262144, 262144, 262144, 0, 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0, | 
|  | 0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0; | 
|  | EigenSolver<MatrixXf> eig(A_bug1174); | 
|  | CALL_SUBTEST(check_eigensolver_for_given_mat(eig, A_bug1174)); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(eigensolver_generic) { | 
|  | int s = 0; | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(eigensolver(Matrix4f())); | 
|  | s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4); | 
|  | CALL_SUBTEST_2(eigensolver(MatrixXd(s, s))); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | // some trivial but implementation-wise tricky cases | 
|  | CALL_SUBTEST_2(eigensolver(MatrixXd(1, 1))); | 
|  | CALL_SUBTEST_2(eigensolver(MatrixXd(2, 2))); | 
|  | CALL_SUBTEST_3(eigensolver(Matrix<double, 1, 1>())); | 
|  | CALL_SUBTEST_4(eigensolver(Matrix2d())); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_1(eigensolver_verify_assert(Matrix4f())); | 
|  | s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4); | 
|  | CALL_SUBTEST_2(eigensolver_verify_assert(MatrixXd(s, s))); | 
|  | CALL_SUBTEST_3(eigensolver_verify_assert(Matrix<double, 1, 1>())); | 
|  | CALL_SUBTEST_4(eigensolver_verify_assert(Matrix2d())); | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s)); | 
|  |  | 
|  | // regression test for bug 410 | 
|  | CALL_SUBTEST_2({ | 
|  | MatrixXd A(1, 1); | 
|  | A(0, 0) = std::sqrt(-1.);  // is Not-a-Number | 
|  | Eigen::EigenSolver<MatrixXd> solver(A); | 
|  | VERIFY_IS_EQUAL(solver.info(), NumericalIssue); | 
|  | }); | 
|  |  | 
|  | CALL_SUBTEST_2(eigensolver_generic_extra<0>()); | 
|  |  | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } |