|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/QR> | 
|  |  | 
|  | template <typename Derived1, typename Derived2> | 
|  | bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, | 
|  | typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision()) { | 
|  | return !((m1 - m2).cwiseAbs2().maxCoeff() < | 
|  | epsilon * epsilon * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff())); | 
|  | } | 
|  |  | 
|  | // Allow specifying tolerance for verifying error. | 
|  | template <typename Type1, typename Type2, typename Tol> | 
|  | inline bool verifyIsApprox(const Type1& a, const Type2& b, Tol tol) { | 
|  | bool ret = a.isApprox(b, tol); | 
|  | if (!ret) { | 
|  | std::cerr << "Difference too large wrt tolerance " << tol << ", relative error is: " << test_relative_error(a, b) | 
|  | << std::endl; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | template <typename LhsType, typename RhsType> | 
|  | std::enable_if_t<RhsType::SizeAtCompileTime == Dynamic, void> check_mismatched_product(LhsType& lhs, | 
|  | const RhsType& rhs) { | 
|  | VERIFY_RAISES_ASSERT(lhs = rhs * rhs); | 
|  | } | 
|  |  | 
|  | template <typename LhsType, typename RhsType> | 
|  | std::enable_if_t<RhsType::SizeAtCompileTime != Dynamic, void> check_mismatched_product(LhsType& /*unused*/, | 
|  | const RhsType& /*unused*/) {} | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void product(const MatrixType& m) { | 
|  | /* this test covers the following files: | 
|  | Identity.h Product.h | 
|  | */ | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType; | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType; | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, | 
|  | MatrixType::Flags & RowMajorBit ? ColMajor : RowMajor> | 
|  | OtherMajorMatrixType; | 
|  |  | 
|  | // We want a tighter epsilon for not-approx tests.  Otherwise, for certain | 
|  | // low-precision types (e.g. bfloat16), the bound ends up being relatively large | 
|  | // (e.g. 0.12), causing flaky tests. | 
|  | RealScalar not_approx_epsilon = RealScalar(0.1) * NumTraits<RealScalar>::dummy_precision(); | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | // this test relies a lot on Random.h, and there's not much more that we can do | 
|  | // to test it, hence I consider that we will have tested Random.h | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); | 
|  | RowSquareMatrixType identity = RowSquareMatrixType::Identity(rows, rows), | 
|  | square = RowSquareMatrixType::Random(rows, rows), res = RowSquareMatrixType::Random(rows, rows); | 
|  | ColSquareMatrixType square2 = ColSquareMatrixType::Random(cols, cols), res2 = ColSquareMatrixType::Random(cols, cols); | 
|  | RowVectorType v1 = RowVectorType::Random(rows); | 
|  | ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); | 
|  |  | 
|  | // Prevent overflows for integer types. | 
|  | if (Eigen::NumTraits<Scalar>::IsInteger) { | 
|  | Scalar kMaxVal = Scalar(10000); | 
|  | m1.array() = m1.array() - kMaxVal * (m1.array() / kMaxVal); | 
|  | m2.array() = m2.array() - kMaxVal * (m2.array() / kMaxVal); | 
|  | v1.array() = v1.array() - kMaxVal * (v1.array() / kMaxVal); | 
|  | } | 
|  |  | 
|  | OtherMajorMatrixType tm1 = m1; | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  |  | 
|  | Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1), | 
|  | c2 = internal::random<Index>(0, cols - 1); | 
|  |  | 
|  | // begin testing Product.h: only associativity for now | 
|  | // (we use Transpose.h but this doesn't count as a test for it) | 
|  | { | 
|  | // Increase tolerance, since coefficients here can get relatively large. | 
|  | RealScalar tol = RealScalar(2) * get_test_precision(m1); | 
|  | VERIFY(verifyIsApprox((m1 * m1.transpose()) * m2, m1 * (m1.transpose() * m2), tol)); | 
|  | } | 
|  | m3 = m1; | 
|  | m3 *= m1.transpose() * m2; | 
|  | VERIFY_IS_APPROX(m3, m1 * (m1.transpose() * m2)); | 
|  | VERIFY_IS_APPROX(m3, m1 * (m1.transpose() * m2)); | 
|  |  | 
|  | // continue testing Product.h: distributivity | 
|  | VERIFY_IS_APPROX(square * (m1 + m2), square * m1 + square * m2); | 
|  | VERIFY_IS_APPROX(square * (m1 - m2), square * m1 - square * m2); | 
|  |  | 
|  | // continue testing Product.h: compatibility with ScalarMultiple.h | 
|  | VERIFY_IS_APPROX(s1 * (square * m1), (s1 * square) * m1); | 
|  | VERIFY_IS_APPROX(s1 * (square * m1), square * (m1 * s1)); | 
|  |  | 
|  | // test Product.h together with Identity.h | 
|  | VERIFY_IS_APPROX(v1, identity * v1); | 
|  | VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity); | 
|  | // again, test operator() to check const-qualification | 
|  | VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r, c), static_cast<Scalar>(r == c)); | 
|  |  | 
|  | if (rows != cols) { | 
|  | check_mismatched_product(m3, m1); | 
|  | } | 
|  |  | 
|  | // test the previous tests were not screwed up because operator* returns 0 | 
|  | // (we use the more accurate default epsilon) | 
|  | if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) { | 
|  | VERIFY(areNotApprox(m1.transpose() * m2, m2.transpose() * m1, not_approx_epsilon)); | 
|  | } | 
|  |  | 
|  | // test optimized operator+= path | 
|  | res = square; | 
|  | res.noalias() += m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); | 
|  | if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) { | 
|  | VERIFY(areNotApprox(res, square + m2 * m1.transpose(), not_approx_epsilon)); | 
|  | } | 
|  | vcres = vc2; | 
|  | vcres.noalias() += m1.transpose() * v1; | 
|  | VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); | 
|  |  | 
|  | // test optimized operator-= path | 
|  | res = square; | 
|  | res.noalias() -= m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square - (m1 * m2.transpose())); | 
|  | if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) { | 
|  | VERIFY(areNotApprox(res, square - m2 * m1.transpose(), not_approx_epsilon)); | 
|  | } | 
|  | vcres = vc2; | 
|  | vcres.noalias() -= m1.transpose() * v1; | 
|  | VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1); | 
|  |  | 
|  | // test scaled products | 
|  | res = square; | 
|  | res.noalias() = s1 * m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, ((s1 * m1).eval() * m2.transpose())); | 
|  | res = square; | 
|  | res.noalias() += s1 * m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square + ((s1 * m1).eval() * m2.transpose())); | 
|  | res = square; | 
|  | res.noalias() -= s1 * m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square - ((s1 * m1).eval() * m2.transpose())); | 
|  |  | 
|  | // test d ?= a+b*c rules | 
|  | res.noalias() = square + m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); | 
|  | res.noalias() += square + m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, Scalar(2) * (square + m1 * m2.transpose())); | 
|  | res.noalias() -= square + m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); | 
|  |  | 
|  | // test d ?= a-b*c rules | 
|  | res.noalias() = square - m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square - m1 * m2.transpose()); | 
|  | res.noalias() += square - m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, Scalar(2) * (square - m1 * m2.transpose())); | 
|  | res.noalias() -= square - m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square - m1 * m2.transpose()); | 
|  |  | 
|  | tm1 = m1; | 
|  | VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); | 
|  | VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); | 
|  |  | 
|  | // test submatrix and matrix/vector product | 
|  | for (int i = 0; i < rows; ++i) res.row(i) = m1.row(i) * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, m1 * m2.transpose()); | 
|  | // the other way round: | 
|  | for (int i = 0; i < rows; ++i) res.col(i) = m1 * m2.transpose().col(i); | 
|  | VERIFY_IS_APPROX(res, m1 * m2.transpose()); | 
|  |  | 
|  | res2 = square2; | 
|  | res2.noalias() += m1.transpose() * m2; | 
|  | VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2); | 
|  | if (!NumTraits<Scalar>::IsInteger && (std::min)(rows, cols) > 1) { | 
|  | VERIFY(areNotApprox(res2, square2 + m2.transpose() * m1, not_approx_epsilon)); | 
|  | } | 
|  |  | 
|  | VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval()); | 
|  | VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval()); | 
|  |  | 
|  | // vector at runtime (see bug 1166) | 
|  | { | 
|  | RowSquareMatrixType ref(square); | 
|  | ColSquareMatrixType ref2(square2); | 
|  | ref = res = square; | 
|  | VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.col(0).transpose() * square.transpose(), | 
|  | (ref.row(0) = m1.col(0).transpose() * square.transpose())); | 
|  | VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.block(0, 0, rows, 1).transpose() * square.transpose(), | 
|  | (ref.row(0) = m1.col(0).transpose() * square.transpose())); | 
|  | VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.col(0).transpose() * square, | 
|  | (ref.row(0) = m1.col(0).transpose() * square)); | 
|  | VERIFY_IS_APPROX(res.block(0, 0, 1, rows).noalias() = m1.block(0, 0, rows, 1).transpose() * square, | 
|  | (ref.row(0) = m1.col(0).transpose() * square)); | 
|  | ref2 = res2 = square2; | 
|  | VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.row(0) * square2.transpose(), | 
|  | (ref2.row(0) = m1.row(0) * square2.transpose())); | 
|  | VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.block(0, 0, 1, cols) * square2.transpose(), | 
|  | (ref2.row(0) = m1.row(0) * square2.transpose())); | 
|  | VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.row(0) * square2, (ref2.row(0) = m1.row(0) * square2)); | 
|  | VERIFY_IS_APPROX(res2.block(0, 0, 1, cols).noalias() = m1.block(0, 0, 1, cols) * square2, | 
|  | (ref2.row(0) = m1.row(0) * square2)); | 
|  | } | 
|  |  | 
|  | // vector.block() (see bug 1283) | 
|  | { | 
|  | RowVectorType w1(rows); | 
|  | VERIFY_IS_APPROX(square * v1.block(0, 0, rows, 1), square * v1); | 
|  | VERIFY_IS_APPROX(w1.noalias() = square * v1.block(0, 0, rows, 1), square * v1); | 
|  | VERIFY_IS_APPROX(w1.block(0, 0, rows, 1).noalias() = square * v1.block(0, 0, rows, 1), square * v1); | 
|  |  | 
|  | Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> w2(cols); | 
|  | VERIFY_IS_APPROX(vc2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.noalias() = vc2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.block(0, 0, 1, cols).noalias() = vc2.block(0, 0, cols, 1).transpose() * square2, | 
|  | vc2.transpose() * square2); | 
|  |  | 
|  | vc2 = square2.block(0, 0, 1, cols).transpose(); | 
|  | VERIFY_IS_APPROX(square2.block(0, 0, 1, cols) * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.noalias() = square2.block(0, 0, 1, cols) * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.block(0, 0, 1, cols).noalias() = square2.block(0, 0, 1, cols) * square2, | 
|  | vc2.transpose() * square2); | 
|  |  | 
|  | vc2 = square2.block(0, 0, cols, 1); | 
|  | VERIFY_IS_APPROX(square2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.noalias() = square2.block(0, 0, cols, 1).transpose() * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.block(0, 0, 1, cols).noalias() = square2.block(0, 0, cols, 1).transpose() * square2, | 
|  | vc2.transpose() * square2); | 
|  | } | 
|  |  | 
|  | // inner product | 
|  | { | 
|  | Scalar x = square2.row(c) * square2.col(c2); | 
|  | VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum()); | 
|  | } | 
|  |  | 
|  | // outer product | 
|  | { | 
|  | VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0, c, rows, 1) * m1.block(r, 0, 1, cols)); | 
|  | VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), | 
|  | m1.block(r, 0, 1, cols).transpose() * m1.block(0, c, rows, 1).transpose()); | 
|  | VERIFY_IS_APPROX(m1.block(0, c, rows, 1) * m1.row(r), m1.block(0, c, rows, 1) * m1.block(r, 0, 1, cols)); | 
|  | VERIFY_IS_APPROX(m1.col(c) * m1.block(r, 0, 1, cols), m1.block(0, c, rows, 1) * m1.block(r, 0, 1, cols)); | 
|  | VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0, 0, rows, 1) * m1.block(r, 0, 1, cols)); | 
|  | VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0, c, rows, 1) * m1.block(0, 0, 1, cols)); | 
|  | } | 
|  |  | 
|  | // Aliasing | 
|  | { | 
|  | ColVectorType x(cols); | 
|  | x.setRandom(); | 
|  | ColVectorType z(x); | 
|  | ColVectorType y(cols); | 
|  | y.setZero(); | 
|  | ColSquareMatrixType A(cols, cols); | 
|  | A.setRandom(); | 
|  | // CwiseBinaryOp | 
|  | VERIFY_IS_APPROX(x = y + A * x, A * z); | 
|  | x = z; | 
|  | VERIFY_IS_APPROX(x = y - A * x, A * (-z)); | 
|  | x = z; | 
|  | // CwiseUnaryOp | 
|  | VERIFY_IS_APPROX(x = Scalar(1.) * (A * x), A * z); | 
|  | } | 
|  |  | 
|  | // regression for blas_trais | 
|  | { | 
|  | // Increase test tolerance, since coefficients can get relatively large. | 
|  | RealScalar tol = RealScalar(2) * get_test_precision(square); | 
|  | VERIFY( | 
|  | verifyIsApprox(square * (square * square).transpose(), square * square.transpose() * square.transpose(), tol)); | 
|  | VERIFY(verifyIsApprox(square * (-(square * square)), -square * square * square, tol)); | 
|  | VERIFY(verifyIsApprox(square * (s1 * (square * square)), s1 * square * square * square, tol)); | 
|  | VERIFY( | 
|  | verifyIsApprox(square * (square * square).conjugate(), square * square.conjugate() * square.conjugate(), tol)); | 
|  | } | 
|  |  | 
|  | // destination with a non-default inner-stride | 
|  | // see bug 1741 | 
|  | if (!MatrixType::IsRowMajor) { | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX; | 
|  | MatrixX buffer(2 * rows, 2 * rows); | 
|  | Map<RowSquareMatrixType, 0, Stride<Dynamic, 2> > map1(buffer.data(), rows, rows, Stride<Dynamic, 2>(2 * rows, 2)); | 
|  | buffer.setZero(); | 
|  | VERIFY_IS_APPROX(map1 = m1 * m2.transpose(), (m1 * m2.transpose()).eval()); | 
|  | buffer.setZero(); | 
|  | VERIFY_IS_APPROX(map1.noalias() = m1 * m2.transpose(), (m1 * m2.transpose()).eval()); | 
|  | buffer.setZero(); | 
|  | VERIFY_IS_APPROX(map1.noalias() += m1 * m2.transpose(), (m1 * m2.transpose()).eval()); | 
|  | } | 
|  | } |