|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void product_selfadjoint(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType; | 
|  |  | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, RowMajor> RhsMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3; | 
|  | VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), v3(rows); | 
|  | RowVectorType r1 = RowVectorType::Random(rows), r2 = RowVectorType::Random(rows); | 
|  | RhsMatrixType m4 = RhsMatrixType::Random(rows, 10); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(), s3 = internal::random<Scalar>(); | 
|  |  | 
|  | m1 = (m1.adjoint() + m1).eval(); | 
|  |  | 
|  | // rank2 update | 
|  | m2 = m1.template triangularView<Lower>(); | 
|  | m2.template selfadjointView<Lower>().rankUpdate(v1, v2); | 
|  | VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint() + v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix()); | 
|  |  | 
|  | m2 = m1.template triangularView<Upper>(); | 
|  | m2.template selfadjointView<Upper>().rankUpdate(-v1, s2 * v2, s3); | 
|  | VERIFY_IS_APPROX(m2, (m1 + (s3 * (-v1) * (s2 * v2).adjoint() + numext::conj(s3) * (s2 * v2) * (-v1).adjoint())) | 
|  | .template triangularView<Upper>() | 
|  | .toDenseMatrix()); | 
|  |  | 
|  | m2 = m1.template triangularView<Upper>(); | 
|  | m2.template selfadjointView<Upper>().rankUpdate(-s2 * r1.adjoint(), r2.adjoint() * s3, s1); | 
|  | VERIFY_IS_APPROX(m2, (m1 + s1 * (-s2 * r1.adjoint()) * (r2.adjoint() * s3).adjoint() + | 
|  | numext::conj(s1) * (r2.adjoint() * s3) * (-s2 * r1.adjoint()).adjoint()) | 
|  | .template triangularView<Upper>() | 
|  | .toDenseMatrix()); | 
|  |  | 
|  | if (rows > 1) { | 
|  | m2 = m1.template triangularView<Lower>(); | 
|  | m2.block(1, 1, rows - 1, cols - 1) | 
|  | .template selfadjointView<Lower>() | 
|  | .rankUpdate(v1.tail(rows - 1), v2.head(cols - 1)); | 
|  | m3 = m1; | 
|  | m3.block(1, 1, rows - 1, cols - 1) += | 
|  | v1.tail(rows - 1) * v2.head(cols - 1).adjoint() + v2.head(cols - 1) * v1.tail(rows - 1).adjoint(); | 
|  | VERIFY_IS_APPROX(m2, m3.template triangularView<Lower>().toDenseMatrix()); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(product_selfadjoint) { | 
|  | int s = 0; | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(product_selfadjoint(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(product_selfadjoint(Matrix<float, 2, 2>())); | 
|  | CALL_SUBTEST_3(product_selfadjoint(Matrix3d())); | 
|  |  | 
|  | s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2); | 
|  | CALL_SUBTEST_4(product_selfadjoint(MatrixXcf(s, s))); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2); | 
|  | CALL_SUBTEST_5(product_selfadjoint(MatrixXcd(s, s))); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE); | 
|  | CALL_SUBTEST_6(product_selfadjoint(MatrixXd(s, s))); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE); | 
|  | CALL_SUBTEST_7(product_selfadjoint(Matrix<float, Dynamic, Dynamic, RowMajor>(s, s))); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } | 
|  | } |