|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/QR> | 
|  | #include <Eigen/SVD> | 
|  | #include "solverbase.h" | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void cod() { | 
|  | Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); | 
|  | Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); | 
|  | Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); | 
|  | Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType; | 
|  | MatrixType matrix; | 
|  | createRandomPIMatrixOfRank(rank, rows, cols, matrix); | 
|  | CompleteOrthogonalDecomposition<MatrixType> cod(matrix); | 
|  | VERIFY(rank == cod.rank()); | 
|  | VERIFY(cols - cod.rank() == cod.dimensionOfKernel()); | 
|  | VERIFY(!cod.isInjective()); | 
|  | VERIFY(!cod.isInvertible()); | 
|  | VERIFY(!cod.isSurjective()); | 
|  |  | 
|  | MatrixQType q = cod.householderQ(); | 
|  | VERIFY_IS_UNITARY(q); | 
|  |  | 
|  | MatrixType z = cod.matrixZ(); | 
|  | VERIFY_IS_UNITARY(z); | 
|  |  | 
|  | MatrixType t; | 
|  | t.setZero(rows, cols); | 
|  | t.topLeftCorner(rank, rank) = cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>(); | 
|  |  | 
|  | MatrixType c = q * t * z * cod.colsPermutation().inverse(); | 
|  | VERIFY_IS_APPROX(matrix, c); | 
|  |  | 
|  | check_solverbase<MatrixType, MatrixType>(matrix, cod, rows, cols, cols2); | 
|  |  | 
|  | // Verify that we get the same minimum-norm solution as the SVD. | 
|  | MatrixType exact_solution = MatrixType::Random(cols, cols2); | 
|  | MatrixType rhs = matrix * exact_solution; | 
|  | MatrixType cod_solution = cod.solve(rhs); | 
|  | JacobiSVD<MatrixType, ComputeThinU | ComputeThinV> svd(matrix); | 
|  | MatrixType svd_solution = svd.solve(rhs); | 
|  | VERIFY_IS_APPROX(cod_solution, svd_solution); | 
|  |  | 
|  | MatrixType pinv = cod.pseudoInverse(); | 
|  | VERIFY_IS_APPROX(cod_solution, pinv * rhs); | 
|  |  | 
|  | // now construct a (square) matrix with prescribed determinant | 
|  | Index size = internal::random<Index>(2, 20); | 
|  | matrix.setZero(size, size); | 
|  | for (int i = 0; i < size; i++) { | 
|  | matrix(i, i) = internal::random<Scalar>(); | 
|  | } | 
|  | Scalar det = matrix.diagonal().prod(); | 
|  | RealScalar absdet = numext::abs(det); | 
|  | CompleteOrthogonalDecomposition<MatrixType> cod2(matrix); | 
|  | cod2.compute(matrix); | 
|  | q = cod2.householderQ(); | 
|  | matrix = q * matrix * q.adjoint(); | 
|  | VERIFY_IS_APPROX(det, cod2.determinant()); | 
|  | VERIFY_IS_APPROX(absdet, cod2.absDeterminant()); | 
|  | VERIFY_IS_APPROX(numext::log(absdet), cod2.logAbsDeterminant()); | 
|  | VERIFY_IS_APPROX(numext::sign(det), cod2.signDeterminant()); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int Cols2> | 
|  | void cod_fixedsize() { | 
|  | enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > COD; | 
|  | int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1); | 
|  | Matrix<Scalar, Rows, Cols> matrix; | 
|  | createRandomPIMatrixOfRank(rank, Rows, Cols, matrix); | 
|  | COD cod(matrix); | 
|  | VERIFY(rank == cod.rank()); | 
|  | VERIFY(Cols - cod.rank() == cod.dimensionOfKernel()); | 
|  | VERIFY(cod.isInjective() == (rank == Rows)); | 
|  | VERIFY(cod.isSurjective() == (rank == Cols)); | 
|  | VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective())); | 
|  |  | 
|  | check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(matrix, cod, Rows, Cols, Cols2); | 
|  |  | 
|  | // Verify that we get the same minimum-norm solution as the SVD. | 
|  | Matrix<Scalar, Cols, Cols2> exact_solution; | 
|  | exact_solution.setRandom(Cols, Cols2); | 
|  | Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution; | 
|  | Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs); | 
|  | JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(matrix); | 
|  | Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs); | 
|  | VERIFY_IS_APPROX(cod_solution, svd_solution); | 
|  |  | 
|  | typename Inverse<COD>::PlainObject pinv = cod.pseudoInverse(); | 
|  | VERIFY_IS_APPROX(cod_solution, pinv * rhs); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void qr() { | 
|  | using std::sqrt; | 
|  |  | 
|  | Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE), | 
|  | cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); | 
|  | Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType; | 
|  | MatrixType m1; | 
|  | createRandomPIMatrixOfRank(rank, rows, cols, m1); | 
|  | ColPivHouseholderQR<MatrixType> qr(m1); | 
|  | VERIFY_IS_EQUAL(rank, qr.rank()); | 
|  | VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel()); | 
|  | VERIFY(!qr.isInjective()); | 
|  | VERIFY(!qr.isInvertible()); | 
|  | VERIFY(!qr.isSurjective()); | 
|  |  | 
|  | MatrixQType q = qr.householderQ(); | 
|  | VERIFY_IS_UNITARY(q); | 
|  |  | 
|  | MatrixType r = qr.matrixQR().template triangularView<Upper>(); | 
|  | MatrixType c = q * r * qr.colsPermutation().inverse(); | 
|  | VERIFY_IS_APPROX(m1, c); | 
|  |  | 
|  | // Verify that the absolute value of the diagonal elements in R are | 
|  | // non-increasing until they reach the singularity threshold. | 
|  | RealScalar threshold = sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon(); | 
|  | for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) { | 
|  | RealScalar x = numext::abs(r(i, i)); | 
|  | RealScalar y = numext::abs(r(i + 1, i + 1)); | 
|  | if (x < threshold && y < threshold) continue; | 
|  | if (!test_isApproxOrLessThan(y, x)) { | 
|  | for (Index j = 0; j < (std::min)(rows, cols); ++j) { | 
|  | std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl; | 
|  | } | 
|  | std::cout << "Failure at i=" << i << ", rank=" << rank << ", threshold=" << threshold << std::endl; | 
|  | } | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(y, x); | 
|  | } | 
|  |  | 
|  | check_solverbase<MatrixType, MatrixType>(m1, qr, rows, cols, cols2); | 
|  |  | 
|  | { | 
|  | MatrixType m2, m3; | 
|  | Index size = rows; | 
|  | do { | 
|  | m1 = MatrixType::Random(size, size); | 
|  | qr.compute(m1); | 
|  | } while (!qr.isInvertible()); | 
|  | MatrixType m1_inv = qr.inverse(); | 
|  | m3 = m1 * MatrixType::Random(size, cols2); | 
|  | m2 = qr.solve(m3); | 
|  | VERIFY_IS_APPROX(m2, m1_inv * m3); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int Cols2> | 
|  | void qr_fixedsize() { | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  | enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1); | 
|  | Matrix<Scalar, Rows, Cols> m1; | 
|  | createRandomPIMatrixOfRank(rank, Rows, Cols, m1); | 
|  | ColPivHouseholderQR<Matrix<Scalar, Rows, Cols> > qr(m1); | 
|  | VERIFY_IS_EQUAL(rank, qr.rank()); | 
|  | VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel()); | 
|  | VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows)); | 
|  | VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols)); | 
|  | VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective())); | 
|  |  | 
|  | Matrix<Scalar, Rows, Cols> r = qr.matrixQR().template triangularView<Upper>(); | 
|  | Matrix<Scalar, Rows, Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse(); | 
|  | VERIFY_IS_APPROX(m1, c); | 
|  |  | 
|  | check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(m1, qr, Rows, Cols, Cols2); | 
|  |  | 
|  | // Verify that the absolute value of the diagonal elements in R are | 
|  | // non-increasing until they reache the singularity threshold. | 
|  | RealScalar threshold = sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon(); | 
|  | for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) { | 
|  | RealScalar x = numext::abs(r(i, i)); | 
|  | RealScalar y = numext::abs(r(i + 1, i + 1)); | 
|  | if (x < threshold && y < threshold) continue; | 
|  | if (!test_isApproxOrLessThan(y, x)) { | 
|  | for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) { | 
|  | std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl; | 
|  | } | 
|  | std::cout << "Failure at i=" << i << ", rank=" << rank << ", threshold=" << threshold << std::endl; | 
|  | } | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(y, x); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This test is meant to verify that pivots are chosen such that | 
|  | // even for a graded matrix, the diagonal of R falls of roughly | 
|  | // monotonically until it reaches the threshold for singularity. | 
|  | // We use the so-called Kahan matrix, which is a famous counter-example | 
|  | // for rank-revealing QR. See | 
|  | // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf | 
|  | // page 3 for more detail. | 
|  | template <typename MatrixType> | 
|  | void qr_kahan_matrix() { | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  |  | 
|  | Index rows = 300, cols = rows; | 
|  |  | 
|  | MatrixType m1; | 
|  | m1.setZero(rows, cols); | 
|  | RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows); | 
|  | RealScalar c = std::sqrt(1 - s * s); | 
|  | RealScalar pow_s_i(1.0);  // pow(s,i) | 
|  | for (Index i = 0; i < rows; ++i) { | 
|  | m1(i, i) = pow_s_i; | 
|  | m1.row(i).tail(rows - i - 1) = -pow_s_i * c * MatrixType::Ones(1, rows - i - 1); | 
|  | pow_s_i *= s; | 
|  | } | 
|  | m1 = (m1 + m1.transpose()).eval(); | 
|  | ColPivHouseholderQR<MatrixType> qr(m1); | 
|  | MatrixType r = qr.matrixQR().template triangularView<Upper>(); | 
|  |  | 
|  | RealScalar threshold = std::sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon(); | 
|  | for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) { | 
|  | RealScalar x = numext::abs(r(i, i)); | 
|  | RealScalar y = numext::abs(r(i + 1, i + 1)); | 
|  | if (x < threshold && y < threshold) continue; | 
|  | if (!test_isApproxOrLessThan(y, x)) { | 
|  | for (Index j = 0; j < (std::min)(rows, cols); ++j) { | 
|  | std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl; | 
|  | } | 
|  | std::cout << "Failure at i=" << i << ", rank=" << qr.rank() << ", threshold=" << threshold << std::endl; | 
|  | } | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(y, x); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void qr_invertible() { | 
|  | using std::abs; | 
|  | using std::log; | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | int size = internal::random<int>(10, 50); | 
|  |  | 
|  | MatrixType m1(size, size), m2(size, size), m3(size, size); | 
|  | m1 = MatrixType::Random(size, size); | 
|  |  | 
|  | if (internal::is_same<RealScalar, float>::value) { | 
|  | // let's build a matrix more stable to inverse | 
|  | MatrixType a = MatrixType::Random(size, size * 2); | 
|  | m1 += a * a.adjoint(); | 
|  | } | 
|  |  | 
|  | ColPivHouseholderQR<MatrixType> qr(m1); | 
|  |  | 
|  | check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size); | 
|  |  | 
|  | // now construct a matrix with prescribed determinant | 
|  | m1.setZero(); | 
|  | for (int i = 0; i < size; i++) m1(i, i) = internal::random<Scalar>(); | 
|  | Scalar det = m1.diagonal().prod(); | 
|  | RealScalar absdet = abs(det); | 
|  | m3 = qr.householderQ();  // get a unitary | 
|  | m1 = m3 * m1 * m3.adjoint(); | 
|  | qr.compute(m1); | 
|  | VERIFY_IS_APPROX(det, qr.determinant()); | 
|  | VERIFY_IS_APPROX(absdet, qr.absDeterminant()); | 
|  | VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant()); | 
|  | VERIFY_IS_APPROX(numext::sign(det), qr.signDeterminant()); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void qr_verify_assert() { | 
|  | MatrixType tmp; | 
|  |  | 
|  | ColPivHouseholderQR<MatrixType> qr; | 
|  | VERIFY_RAISES_ASSERT(qr.matrixQR()) | 
|  | VERIFY_RAISES_ASSERT(qr.solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(qr.householderQ()) | 
|  | VERIFY_RAISES_ASSERT(qr.dimensionOfKernel()) | 
|  | VERIFY_RAISES_ASSERT(qr.isInjective()) | 
|  | VERIFY_RAISES_ASSERT(qr.isSurjective()) | 
|  | VERIFY_RAISES_ASSERT(qr.isInvertible()) | 
|  | VERIFY_RAISES_ASSERT(qr.inverse()) | 
|  | VERIFY_RAISES_ASSERT(qr.determinant()) | 
|  | VERIFY_RAISES_ASSERT(qr.absDeterminant()) | 
|  | VERIFY_RAISES_ASSERT(qr.logAbsDeterminant()) | 
|  | VERIFY_RAISES_ASSERT(qr.signDeterminant()) | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void cod_verify_assert() { | 
|  | MatrixType tmp; | 
|  |  | 
|  | CompleteOrthogonalDecomposition<MatrixType> cod; | 
|  | VERIFY_RAISES_ASSERT(cod.matrixQTZ()) | 
|  | VERIFY_RAISES_ASSERT(cod.solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(cod.transpose().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(cod.adjoint().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(cod.householderQ()) | 
|  | VERIFY_RAISES_ASSERT(cod.dimensionOfKernel()) | 
|  | VERIFY_RAISES_ASSERT(cod.isInjective()) | 
|  | VERIFY_RAISES_ASSERT(cod.isSurjective()) | 
|  | VERIFY_RAISES_ASSERT(cod.isInvertible()) | 
|  | VERIFY_RAISES_ASSERT(cod.pseudoInverse()) | 
|  | VERIFY_RAISES_ASSERT(cod.determinant()) | 
|  | VERIFY_RAISES_ASSERT(cod.absDeterminant()) | 
|  | VERIFY_RAISES_ASSERT(cod.logAbsDeterminant()) | 
|  | VERIFY_RAISES_ASSERT(cod.signDeterminant()) | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(qr_colpivoting) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(qr<MatrixXf>()); | 
|  | CALL_SUBTEST_2(qr<MatrixXd>()); | 
|  | CALL_SUBTEST_3(qr<MatrixXcd>()); | 
|  | CALL_SUBTEST_4((qr_fixedsize<Matrix<float, 3, 5>, 4>())); | 
|  | CALL_SUBTEST_5((qr_fixedsize<Matrix<double, 6, 2>, 3>())); | 
|  | CALL_SUBTEST_5((qr_fixedsize<Matrix<double, 1, 1>, 1>())); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(cod<MatrixXf>()); | 
|  | CALL_SUBTEST_2(cod<MatrixXd>()); | 
|  | CALL_SUBTEST_3(cod<MatrixXcd>()); | 
|  | CALL_SUBTEST_4((cod_fixedsize<Matrix<float, 3, 5>, 4>())); | 
|  | CALL_SUBTEST_5((cod_fixedsize<Matrix<double, 6, 2>, 3>())); | 
|  | CALL_SUBTEST_5((cod_fixedsize<Matrix<double, 1, 1>, 1>())); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(qr_invertible<MatrixXf>()); | 
|  | CALL_SUBTEST_2(qr_invertible<MatrixXd>()); | 
|  | CALL_SUBTEST_6(qr_invertible<MatrixXcf>()); | 
|  | CALL_SUBTEST_3(qr_invertible<MatrixXcd>()); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_7(qr_verify_assert<Matrix3f>()); | 
|  | CALL_SUBTEST_8(qr_verify_assert<Matrix3d>()); | 
|  | CALL_SUBTEST_1(qr_verify_assert<MatrixXf>()); | 
|  | CALL_SUBTEST_2(qr_verify_assert<MatrixXd>()); | 
|  | CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>()); | 
|  | CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>()); | 
|  |  | 
|  | CALL_SUBTEST_7(cod_verify_assert<Matrix3f>()); | 
|  | CALL_SUBTEST_8(cod_verify_assert<Matrix3d>()); | 
|  | CALL_SUBTEST_1(cod_verify_assert<MatrixXf>()); | 
|  | CALL_SUBTEST_2(cod_verify_assert<MatrixXd>()); | 
|  | CALL_SUBTEST_6(cod_verify_assert<MatrixXcf>()); | 
|  | CALL_SUBTEST_3(cod_verify_assert<MatrixXcd>()); | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20)); | 
|  |  | 
|  | CALL_SUBTEST_1(qr_kahan_matrix<MatrixXf>()); | 
|  | CALL_SUBTEST_2(qr_kahan_matrix<MatrixXd>()); | 
|  | } |