|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2013 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // This unit test cannot be easily written to work with EIGEN_DEFAULT_TO_ROW_MAJOR | 
|  | #ifdef EIGEN_DEFAULT_TO_ROW_MAJOR | 
|  | #undef EIGEN_DEFAULT_TO_ROW_MAJOR | 
|  | #endif | 
|  |  | 
|  | #define TEST_ENABLE_TEMPORARY_TRACKING | 
|  | #define TEST_CHECK_STATIC_ASSERTIONS | 
|  | #include "main.h" | 
|  |  | 
|  | // test Ref.h | 
|  |  | 
|  | // Deal with i387 extended precision | 
|  | #if EIGEN_ARCH_i386 && !(EIGEN_ARCH_x86_64) | 
|  |  | 
|  | #if EIGEN_COMP_GNUC_STRICT | 
|  | #pragma GCC optimize("-ffloat-store") | 
|  | #else | 
|  | #undef VERIFY_IS_EQUAL | 
|  | #define VERIFY_IS_EQUAL(X, Y) VERIFY_IS_APPROX(X, Y) | 
|  | #endif | 
|  |  | 
|  | #endif | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void ref_matrix(const MatrixType &m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic, MatrixType::Options> DynMatrixType; | 
|  | typedef Matrix<RealScalar, Dynamic, Dynamic, MatrixType::Options> RealDynMatrixType; | 
|  |  | 
|  | typedef Ref<MatrixType> RefMat; | 
|  | typedef Ref<DynMatrixType> RefDynMat; | 
|  | typedef Ref<const DynMatrixType> ConstRefDynMat; | 
|  | typedef Ref<RealDynMatrixType, 0, Stride<Dynamic, Dynamic>> RefRealMatWithStride; | 
|  |  | 
|  | Index rows = m.rows(), cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), m2 = m1; | 
|  |  | 
|  | Index i = internal::random<Index>(0, rows - 1); | 
|  | Index j = internal::random<Index>(0, cols - 1); | 
|  | Index brows = internal::random<Index>(1, rows - i); | 
|  | Index bcols = internal::random<Index>(1, cols - j); | 
|  |  | 
|  | RefMat rm0 = m1; | 
|  | VERIFY_IS_EQUAL(rm0, m1); | 
|  | RefDynMat rm1 = m1; | 
|  | VERIFY_IS_EQUAL(rm1, m1); | 
|  | RefDynMat rm2 = m1.block(i, j, brows, bcols); | 
|  | VERIFY_IS_EQUAL(rm2, m1.block(i, j, brows, bcols)); | 
|  | rm2.setOnes(); | 
|  | m2.block(i, j, brows, bcols).setOnes(); | 
|  | VERIFY_IS_EQUAL(m1, m2); | 
|  |  | 
|  | m2.block(i, j, brows, bcols).setRandom(); | 
|  | rm2 = m2.block(i, j, brows, bcols); | 
|  | VERIFY_IS_EQUAL(m1, m2); | 
|  |  | 
|  | ConstRefDynMat rm3 = m1.block(i, j, brows, bcols); | 
|  | m1.block(i, j, brows, bcols) *= 2; | 
|  | m2.block(i, j, brows, bcols) *= 2; | 
|  | VERIFY_IS_EQUAL(rm3, m2.block(i, j, brows, bcols)); | 
|  | RefRealMatWithStride rm4 = m1.real(); | 
|  | VERIFY_IS_EQUAL(rm4, m2.real()); | 
|  | rm4.array() += 1; | 
|  | m2.real().array() += 1; | 
|  | VERIFY_IS_EQUAL(m1, m2); | 
|  | } | 
|  |  | 
|  | template <typename VectorType> | 
|  | void ref_vector(const VectorType &m) { | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  | typedef typename VectorType::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar, Dynamic, 1, VectorType::Options> DynMatrixType; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixType; | 
|  | typedef Matrix<RealScalar, Dynamic, 1, VectorType::Options> RealDynMatrixType; | 
|  |  | 
|  | typedef Ref<VectorType> RefMat; | 
|  | typedef Ref<DynMatrixType> RefDynMat; | 
|  | typedef Ref<const DynMatrixType> ConstRefDynMat; | 
|  | typedef Ref<RealDynMatrixType, 0, InnerStride<>> RefRealMatWithStride; | 
|  | typedef Ref<DynMatrixType, 0, InnerStride<>> RefMatWithStride; | 
|  |  | 
|  | Index size = m.size(); | 
|  |  | 
|  | VectorType v1 = VectorType::Random(size), v2 = v1; | 
|  | MatrixType mat1 = MatrixType::Random(size, size), mat2 = mat1, mat3 = MatrixType::Random(size, size); | 
|  |  | 
|  | Index i = internal::random<Index>(0, size - 1); | 
|  | Index bsize = internal::random<Index>(1, size - i); | 
|  |  | 
|  | { | 
|  | RefMat rm0 = v1; | 
|  | VERIFY_IS_EQUAL(rm0, v1); | 
|  | } | 
|  | { | 
|  | RefMat rm0 = v1.block(0, 0, size, 1); | 
|  | VERIFY_IS_EQUAL(rm0, v1); | 
|  | } | 
|  | { | 
|  | RefDynMat rv1 = v1; | 
|  | VERIFY_IS_EQUAL(rv1, v1); | 
|  | } | 
|  | { | 
|  | RefDynMat rv1 = v1.block(0, 0, size, 1); | 
|  | VERIFY_IS_EQUAL(rv1, v1); | 
|  | } | 
|  |  | 
|  | RefDynMat rv2 = v1.segment(i, bsize); | 
|  | VERIFY_IS_EQUAL(rv2, v1.segment(i, bsize)); | 
|  | rv2.setOnes(); | 
|  | v2.segment(i, bsize).setOnes(); | 
|  | VERIFY_IS_EQUAL(v1, v2); | 
|  |  | 
|  | v2.segment(i, bsize).setRandom(); | 
|  | rv2 = v2.segment(i, bsize); | 
|  | VERIFY_IS_EQUAL(v1, v2); | 
|  |  | 
|  | ConstRefDynMat rm3 = v1.segment(i, bsize); | 
|  | v1.segment(i, bsize) *= 2; | 
|  | v2.segment(i, bsize) *= 2; | 
|  | VERIFY_IS_EQUAL(rm3, v2.segment(i, bsize)); | 
|  |  | 
|  | RefRealMatWithStride rm4 = v1.real(); | 
|  | VERIFY_IS_EQUAL(rm4, v2.real()); | 
|  | rm4.array() += 1; | 
|  | v2.real().array() += 1; | 
|  | VERIFY_IS_EQUAL(v1, v2); | 
|  |  | 
|  | RefMatWithStride rm5 = mat1.row(i).transpose(); | 
|  | VERIFY_IS_EQUAL(rm5, mat1.row(i).transpose()); | 
|  | rm5.array() += 1; | 
|  | mat2.row(i).array() += 1; | 
|  | VERIFY_IS_EQUAL(mat1, mat2); | 
|  | rm5.noalias() = rm4.transpose() * mat3; | 
|  | mat2.row(i) = v2.real().transpose() * mat3; | 
|  | VERIFY_IS_APPROX(mat1, mat2); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Rows, int Cols> | 
|  | void ref_vector_fixed_sizes() { | 
|  | typedef Matrix<Scalar, Rows, Cols, RowMajor> RowMajorMatrixType; | 
|  | typedef Matrix<Scalar, Rows, Cols, ColMajor> ColMajorMatrixType; | 
|  | typedef Matrix<Scalar, 1, Cols> RowVectorType; | 
|  | typedef Matrix<Scalar, Rows, 1> ColVectorType; | 
|  | typedef Matrix<Scalar, Cols, 1> RowVectorTransposeType; | 
|  | typedef Matrix<Scalar, 1, Rows> ColVectorTransposeType; | 
|  | typedef Stride<Dynamic, Dynamic> DynamicStride; | 
|  |  | 
|  | RowMajorMatrixType mr = RowMajorMatrixType::Random(); | 
|  | ColMajorMatrixType mc = ColMajorMatrixType::Random(); | 
|  |  | 
|  | Index i = internal::random<Index>(0, Rows - 1); | 
|  | Index j = internal::random<Index>(0, Cols - 1); | 
|  |  | 
|  | // Reference ith row. | 
|  | Ref<RowVectorType, 0, DynamicStride> mr_ri = mr.row(i); | 
|  | VERIFY_IS_EQUAL(mr_ri, mr.row(i)); | 
|  | Ref<RowVectorType, 0, DynamicStride> mc_ri = mc.row(i); | 
|  | VERIFY_IS_EQUAL(mc_ri, mc.row(i)); | 
|  |  | 
|  | // Reference jth col. | 
|  | Ref<ColVectorType, 0, DynamicStride> mr_cj = mr.col(j); | 
|  | VERIFY_IS_EQUAL(mr_cj, mr.col(j)); | 
|  | Ref<ColVectorType, 0, DynamicStride> mc_cj = mc.col(j); | 
|  | VERIFY_IS_EQUAL(mc_cj, mc.col(j)); | 
|  |  | 
|  | // Reference the transpose of row i. | 
|  | Ref<RowVectorTransposeType, 0, DynamicStride> mr_rit = mr.row(i); | 
|  | VERIFY_IS_EQUAL(mr_rit, mr.row(i).transpose()); | 
|  | Ref<RowVectorTransposeType, 0, DynamicStride> mc_rit = mc.row(i); | 
|  | VERIFY_IS_EQUAL(mc_rit, mc.row(i).transpose()); | 
|  |  | 
|  | // Reference the transpose of col j. | 
|  | Ref<ColVectorTransposeType, 0, DynamicStride> mr_cjt = mr.col(j); | 
|  | VERIFY_IS_EQUAL(mr_cjt, mr.col(j).transpose()); | 
|  | Ref<ColVectorTransposeType, 0, DynamicStride> mc_cjt = mc.col(j); | 
|  | VERIFY_IS_EQUAL(mc_cjt, mc.col(j).transpose()); | 
|  |  | 
|  | // Const references without strides. | 
|  | Ref<const RowVectorType> cmr_ri = mr.row(i); | 
|  | VERIFY_IS_EQUAL(cmr_ri, mr.row(i)); | 
|  | Ref<const RowVectorType> cmc_ri = mc.row(i); | 
|  | VERIFY_IS_EQUAL(cmc_ri, mc.row(i)); | 
|  |  | 
|  | Ref<const ColVectorType> cmr_cj = mr.col(j); | 
|  | VERIFY_IS_EQUAL(cmr_cj, mr.col(j)); | 
|  | Ref<const ColVectorType> cmc_cj = mc.col(j); | 
|  | VERIFY_IS_EQUAL(cmc_cj, mc.col(j)); | 
|  |  | 
|  | Ref<const RowVectorTransposeType> cmr_rit = mr.row(i); | 
|  | VERIFY_IS_EQUAL(cmr_rit, mr.row(i).transpose()); | 
|  | Ref<const RowVectorTransposeType> cmc_rit = mc.row(i); | 
|  | VERIFY_IS_EQUAL(cmc_rit, mc.row(i).transpose()); | 
|  |  | 
|  | Ref<const ColVectorTransposeType> cmr_cjt = mr.col(j); | 
|  | VERIFY_IS_EQUAL(cmr_cjt, mr.col(j).transpose()); | 
|  | Ref<const ColVectorTransposeType> cmc_cjt = mc.col(j); | 
|  | VERIFY_IS_EQUAL(cmc_cjt, mc.col(j).transpose()); | 
|  | } | 
|  |  | 
|  | template <typename PlainObjectType> | 
|  | void check_const_correctness(const PlainObjectType &) { | 
|  | // verify that ref-to-const don't have LvalueBit | 
|  | typedef std::add_const_t<PlainObjectType> ConstPlainObjectType; | 
|  | VERIFY(!(internal::traits<Ref<ConstPlainObjectType>>::Flags & LvalueBit)); | 
|  | VERIFY(!(internal::traits<Ref<ConstPlainObjectType, Aligned>>::Flags & LvalueBit)); | 
|  | VERIFY(!(Ref<ConstPlainObjectType>::Flags & LvalueBit)); | 
|  | VERIFY(!(Ref<ConstPlainObjectType, Aligned>::Flags & LvalueBit)); | 
|  | } | 
|  |  | 
|  | template <typename B> | 
|  | EIGEN_DONT_INLINE void call_ref_1(Ref<VectorXf> a, const B &b) { | 
|  | VERIFY_IS_EQUAL(a, b); | 
|  | } | 
|  | template <typename B> | 
|  | EIGEN_DONT_INLINE void call_ref_2(const Ref<const VectorXf> &a, const B &b) { | 
|  | VERIFY_IS_EQUAL(a, b); | 
|  | } | 
|  | template <typename B> | 
|  | EIGEN_DONT_INLINE void call_ref_3(Ref<VectorXf, 0, InnerStride<>> a, const B &b) { | 
|  | VERIFY_IS_EQUAL(a, b); | 
|  | } | 
|  | template <typename B> | 
|  | EIGEN_DONT_INLINE void call_ref_4(const Ref<const VectorXf, 0, InnerStride<>> &a, const B &b) { | 
|  | VERIFY_IS_EQUAL(a, b); | 
|  | } | 
|  | template <typename B> | 
|  | EIGEN_DONT_INLINE void call_ref_5(Ref<MatrixXf, 0, OuterStride<>> a, const B &b) { | 
|  | VERIFY_IS_EQUAL(a, b); | 
|  | } | 
|  | template <typename B> | 
|  | EIGEN_DONT_INLINE void call_ref_6(const Ref<const MatrixXf, 0, OuterStride<>> &a, const B &b) { | 
|  | VERIFY_IS_EQUAL(a, b); | 
|  | } | 
|  | template <typename B> | 
|  | EIGEN_DONT_INLINE void call_ref_7(Ref<Matrix<float, Dynamic, 3>> a, const B &b) { | 
|  | VERIFY_IS_EQUAL(a, b); | 
|  | } | 
|  |  | 
|  | void call_ref() { | 
|  | VectorXcf ca = VectorXcf::Random(10); | 
|  | VectorXf a = VectorXf::Random(10); | 
|  | RowVectorXf b = RowVectorXf::Random(10); | 
|  | MatrixXf A = MatrixXf::Random(10, 10); | 
|  | RowVector3f c = RowVector3f::Random(); | 
|  | const VectorXf &ac(a); | 
|  | VectorBlock<VectorXf> ab(a, 0, 3); | 
|  | const VectorBlock<VectorXf> abc(a, 0, 3); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT(call_ref_1(a, a), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_1(b, b.transpose()), 0); | 
|  | //   call_ref_1(ac,a<c);           // does not compile because ac is const | 
|  | VERIFY_EVALUATION_COUNT(call_ref_1(ab, ab), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_1(a.head(4), a.head(4)), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_1(abc, abc), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_1(A.col(3), A.col(3)), 0); | 
|  | //   call_ref_1(A.row(3),A.row(3));    // does not compile because innerstride!=1 | 
|  | VERIFY_EVALUATION_COUNT(call_ref_3(A.row(3), A.row(3).transpose()), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_4(A.row(3), A.row(3).transpose()), 0); | 
|  | //   call_ref_1(a+a, a+a);          // does not compile for obvious reason | 
|  |  | 
|  | MatrixXf tmp = A * A.col(1); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_2(A * A.col(1), tmp), 1);  // evaluated into a temp | 
|  | VERIFY_EVALUATION_COUNT(call_ref_2(ac.head(5), ac.head(5)), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_2(ac, ac), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_2(a, a), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_2(ab, ab), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_2(a.head(4), a.head(4)), 0); | 
|  | tmp = a + a; | 
|  | VERIFY_EVALUATION_COUNT(call_ref_2(a + a, tmp), 1);            // evaluated into a temp | 
|  | VERIFY_EVALUATION_COUNT(call_ref_2(ca.imag(), ca.imag()), 1);  // evaluated into a temp | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT(call_ref_4(ac.head(5), ac.head(5)), 0); | 
|  | tmp = a + a; | 
|  | VERIFY_EVALUATION_COUNT(call_ref_4(a + a, tmp), 1);  // evaluated into a temp | 
|  | VERIFY_EVALUATION_COUNT(call_ref_4(ca.imag(), ca.imag()), 0); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT(call_ref_5(a, a), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_5(a.head(3), a.head(3)), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_5(A, A), 0); | 
|  | //   call_ref_5(A.transpose(),A.transpose());   // does not compile because storage order does not match | 
|  | VERIFY_EVALUATION_COUNT(call_ref_5(A.block(1, 1, 2, 2), A.block(1, 1, 2, 2)), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_5(b, b), | 
|  | 0);  // storage order do not match, but this is a degenerate case that should work | 
|  | VERIFY_EVALUATION_COUNT(call_ref_5(a.row(3), a.row(3)), 0); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT(call_ref_6(a, a), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_6(a.head(3), a.head(3)), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_6(A.row(3), A.row(3)), | 
|  | 1);  // evaluated into a temp thouth it could be avoided by viewing it as a 1xn matrix | 
|  | tmp = A + A; | 
|  | VERIFY_EVALUATION_COUNT(call_ref_6(A + A, tmp), 1);  // evaluated into a temp | 
|  | VERIFY_EVALUATION_COUNT(call_ref_6(A, A), 0); | 
|  | VERIFY_EVALUATION_COUNT(call_ref_6(A.transpose(), A.transpose()), | 
|  | 1);  // evaluated into a temp because the storage orders do not match | 
|  | VERIFY_EVALUATION_COUNT(call_ref_6(A.block(1, 1, 2, 2), A.block(1, 1, 2, 2)), 0); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT(call_ref_7(c, c), 0); | 
|  | } | 
|  |  | 
|  | typedef Matrix<double, Dynamic, Dynamic, RowMajor> RowMatrixXd; | 
|  | int test_ref_overload_fun1(Ref<MatrixXd>) { return 1; } | 
|  | int test_ref_overload_fun1(Ref<RowMatrixXd>) { return 2; } | 
|  | int test_ref_overload_fun1(Ref<MatrixXf>) { return 3; } | 
|  |  | 
|  | int test_ref_overload_fun2(Ref<const MatrixXd>) { return 4; } | 
|  | int test_ref_overload_fun2(Ref<const MatrixXf>) { return 5; } | 
|  |  | 
|  | void test_ref_ambiguous(const Ref<const ArrayXd> &A, Ref<ArrayXd> B) { | 
|  | B = A; | 
|  | B = A - A; | 
|  | } | 
|  |  | 
|  | // See also bug 969 | 
|  | void test_ref_overloads() { | 
|  | MatrixXd Ad, Bd; | 
|  | RowMatrixXd rAd, rBd; | 
|  | VERIFY(test_ref_overload_fun1(Ad) == 1); | 
|  | VERIFY(test_ref_overload_fun1(rAd) == 2); | 
|  |  | 
|  | MatrixXf Af, Bf; | 
|  | VERIFY(test_ref_overload_fun2(Ad) == 4); | 
|  | VERIFY(test_ref_overload_fun2(Ad + Bd) == 4); | 
|  | VERIFY(test_ref_overload_fun2(Af + Bf) == 5); | 
|  |  | 
|  | ArrayXd A, B; | 
|  | test_ref_ambiguous(A, B); | 
|  | } | 
|  |  | 
|  | template <typename Ref_> | 
|  | struct RefDerived : Ref_ { | 
|  | using Ref_::m_object; | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType, typename Derived> | 
|  | void test_cref_move_ctor(const DenseBase<Derived> &expr) { | 
|  | typedef Ref<const MatrixType> CRef; | 
|  | typedef RefDerived<CRef> CRefDerived; | 
|  |  | 
|  | const bool owns_data = !bool(internal::traits<CRef>::template match<Derived>::type::value); | 
|  | CRef cref1(expr); | 
|  | const double *data1 = cref1.data(), *obj_data1 = static_cast<CRefDerived &>(cref1).m_object.data(); | 
|  | VERIFY(test_is_equal(data1, obj_data1, owns_data)); | 
|  | CRef cref2(std::move(cref1)); | 
|  | VERIFY_IS_EQUAL(data1, cref1.data()); | 
|  | const double *data2 = cref2.data(), *obj_data2 = static_cast<CRefDerived &>(cref2).m_object.data(); | 
|  | VERIFY(test_is_equal(data1, data2, MatrixType::MaxSizeAtCompileTime == Dynamic || !owns_data)); | 
|  | VERIFY(test_is_equal(data1, obj_data2, MatrixType::MaxSizeAtCompileTime == Dynamic && owns_data)); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void test_contiguous_ref_no_copy(const PlainObjectBase<MatrixType> &obj) { | 
|  | typedef Ref<MatrixType, Unaligned, Stride<0, 0>> Ref_; | 
|  | typedef Ref<const MatrixType, Unaligned, Stride<0, 0>> CRef_; | 
|  | MatrixType m(obj); | 
|  | Ref_ ref(m); | 
|  | VERIFY(test_is_equal(ref.data(), m.data(), true)); | 
|  | CRef_ cref(m); | 
|  | VERIFY(test_is_equal(cref.data(), m.data(), true)); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(ref) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(ref_vector(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_1(check_const_correctness(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(ref_vector(Vector4d())); | 
|  | CALL_SUBTEST_2(check_const_correctness(Matrix4d())); | 
|  | CALL_SUBTEST_3(ref_vector(Vector4cf())); | 
|  | CALL_SUBTEST_4(ref_vector(VectorXcf(8))); | 
|  | CALL_SUBTEST_5(ref_vector(VectorXi(12))); | 
|  | CALL_SUBTEST_5(check_const_correctness(VectorXi(12))); | 
|  |  | 
|  | CALL_SUBTEST_1(ref_matrix(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(ref_matrix(Matrix4d())); | 
|  | CALL_SUBTEST_1(ref_matrix(Matrix<float, 3, 5>())); | 
|  | CALL_SUBTEST_4(ref_matrix(MatrixXcf(internal::random<int>(1, 10), internal::random<int>(1, 10)))); | 
|  | CALL_SUBTEST_4(ref_matrix(Matrix<std::complex<double>, 10, 15>())); | 
|  | CALL_SUBTEST_5(ref_matrix(MatrixXi(internal::random<int>(1, 10), internal::random<int>(1, 10)))); | 
|  | CALL_SUBTEST_6(call_ref()); | 
|  |  | 
|  | CALL_SUBTEST_8((ref_vector_fixed_sizes<float, 3, 5>())); | 
|  | CALL_SUBTEST_8((ref_vector_fixed_sizes<float, 15, 10>())); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_7(test_ref_overloads()); | 
|  |  | 
|  | CALL_SUBTEST_9(test_cref_move_ctor<VectorXd>(VectorXd::Ones(9))); | 
|  | CALL_SUBTEST_9(test_cref_move_ctor<VectorXd>(VectorXd(9))); | 
|  | CALL_SUBTEST_9(test_cref_move_ctor<Vector3d>(Vector3d::Ones())); | 
|  | CALL_SUBTEST_9(test_cref_move_ctor<Vector3d>(Vector3d())); | 
|  | CALL_SUBTEST_9(test_cref_move_ctor<MatrixXd>(MatrixXd::Ones(9, 5))); | 
|  | CALL_SUBTEST_9(test_cref_move_ctor<MatrixXd>(MatrixXd(9, 5))); | 
|  | CALL_SUBTEST_9(test_cref_move_ctor<Matrix3d>(Matrix3d::Ones())); | 
|  | CALL_SUBTEST_9(test_cref_move_ctor<Matrix3d>(Matrix3d())); | 
|  | CALL_SUBTEST_10(test_contiguous_ref_no_copy(VectorXd(9))); | 
|  | CALL_SUBTEST_10(test_contiguous_ref_no_copy(Vector3d())); | 
|  | CALL_SUBTEST_10(test_contiguous_ref_no_copy(MatrixXd(9, 5))); | 
|  | CALL_SUBTEST_10(test_contiguous_ref_no_copy(Matrix3d())); | 
|  | } |