| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_SPLINE_FITTING_H | 
 | #define EIGEN_SPLINE_FITTING_H | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 | #include <numeric> | 
 | #include <vector> | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | #include "SplineFwd.h" | 
 |  | 
 | #include "../../../../Eigen/LU" | 
 | #include "../../../../Eigen/QR" | 
 |  | 
 | namespace Eigen { | 
 | /** | 
 |  * \brief Computes knot averages. | 
 |  * \ingroup Splines_Module | 
 |  * | 
 |  * The knots are computed as | 
 |  * \f{align*} | 
 |  *  u_0 & = \hdots = u_p = 0 \\ | 
 |  *  u_{m-p} & = \hdots = u_{m} = 1 \\ | 
 |  *  u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p | 
 |  * \f} | 
 |  * where \f$p\f$ is the degree and \f$m+1\f$ the number knots | 
 |  * of the desired interpolating spline. | 
 |  * | 
 |  * \param[in] parameters The input parameters. During interpolation one for each data point. | 
 |  * \param[in] degree The spline degree which is used during the interpolation. | 
 |  * \param[out] knots The output knot vector. | 
 |  * | 
 |  * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data | 
 |  **/ | 
 | template <typename KnotVectorType> | 
 | void KnotAveraging(const KnotVectorType& parameters, DenseIndex degree, KnotVectorType& knots) { | 
 |   knots.resize(parameters.size() + degree + 1); | 
 |  | 
 |   for (DenseIndex j = 1; j < parameters.size() - degree; ++j) knots(j + degree) = parameters.segment(j, degree).mean(); | 
 |  | 
 |   knots.segment(0, degree + 1) = KnotVectorType::Zero(degree + 1); | 
 |   knots.segment(knots.size() - degree - 1, degree + 1) = KnotVectorType::Ones(degree + 1); | 
 | } | 
 |  | 
 | /** | 
 |  * \brief Computes knot averages when derivative constraints are present. | 
 |  * Note that this is a technical interpretation of the referenced article | 
 |  * since the algorithm contained therein is incorrect as written. | 
 |  * \ingroup Splines_Module | 
 |  * | 
 |  * \param[in] parameters The parameters at which the interpolation B-Spline | 
 |  *            will intersect the given interpolation points. The parameters | 
 |  *            are assumed to be a non-decreasing sequence. | 
 |  * \param[in] degree The degree of the interpolating B-Spline. This must be | 
 |  *            greater than zero. | 
 |  * \param[in] derivativeIndices The indices corresponding to parameters at | 
 |  *            which there are derivative constraints. The indices are assumed | 
 |  *            to be a non-decreasing sequence. | 
 |  * \param[out] knots The calculated knot vector. These will be returned as a | 
 |  *             non-decreasing sequence | 
 |  * | 
 |  * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008. | 
 |  * Curve interpolation with directional constraints for engineering design. | 
 |  * Engineering with Computers | 
 |  **/ | 
 | template <typename KnotVectorType, typename ParameterVectorType, typename IndexArray> | 
 | void KnotAveragingWithDerivatives(const ParameterVectorType& parameters, const unsigned int degree, | 
 |                                   const IndexArray& derivativeIndices, KnotVectorType& knots) { | 
 |   typedef typename ParameterVectorType::Scalar Scalar; | 
 |  | 
 |   DenseIndex numParameters = parameters.size(); | 
 |   DenseIndex numDerivatives = derivativeIndices.size(); | 
 |  | 
 |   if (numDerivatives < 1) { | 
 |     KnotAveraging(parameters, degree, knots); | 
 |     return; | 
 |   } | 
 |  | 
 |   DenseIndex startIndex; | 
 |   DenseIndex endIndex; | 
 |  | 
 |   DenseIndex numInternalDerivatives = numDerivatives; | 
 |  | 
 |   if (derivativeIndices[0] == 0) { | 
 |     startIndex = 0; | 
 |     --numInternalDerivatives; | 
 |   } else { | 
 |     startIndex = 1; | 
 |   } | 
 |   if (derivativeIndices[numDerivatives - 1] == numParameters - 1) { | 
 |     endIndex = numParameters - degree; | 
 |     --numInternalDerivatives; | 
 |   } else { | 
 |     endIndex = numParameters - degree - 1; | 
 |   } | 
 |  | 
 |   // There are (endIndex - startIndex + 1) knots obtained from the averaging | 
 |   // and 2 for the first and last parameters. | 
 |   DenseIndex numAverageKnots = endIndex - startIndex + 3; | 
 |   KnotVectorType averageKnots(numAverageKnots); | 
 |   averageKnots[0] = parameters[0]; | 
 |  | 
 |   int newKnotIndex = 0; | 
 |   for (DenseIndex i = startIndex; i <= endIndex; ++i) | 
 |     averageKnots[++newKnotIndex] = parameters.segment(i, degree).mean(); | 
 |   averageKnots[++newKnotIndex] = parameters[numParameters - 1]; | 
 |  | 
 |   newKnotIndex = -1; | 
 |  | 
 |   ParameterVectorType temporaryParameters(numParameters + 1); | 
 |   KnotVectorType derivativeKnots(numInternalDerivatives); | 
 |   for (DenseIndex i = 0; i < numAverageKnots - 1; ++i) { | 
 |     temporaryParameters[0] = averageKnots[i]; | 
 |     ParameterVectorType parameterIndices(numParameters); | 
 |     int temporaryParameterIndex = 1; | 
 |     for (DenseIndex j = 0; j < numParameters; ++j) { | 
 |       Scalar parameter = parameters[j]; | 
 |       if (parameter >= averageKnots[i] && parameter < averageKnots[i + 1]) { | 
 |         parameterIndices[temporaryParameterIndex] = j; | 
 |         temporaryParameters[temporaryParameterIndex++] = parameter; | 
 |       } | 
 |     } | 
 |     temporaryParameters[temporaryParameterIndex] = averageKnots[i + 1]; | 
 |  | 
 |     for (int j = 0; j <= temporaryParameterIndex - 2; ++j) { | 
 |       for (DenseIndex k = 0; k < derivativeIndices.size(); ++k) { | 
 |         if (parameterIndices[j + 1] == derivativeIndices[k] && parameterIndices[j + 1] != 0 && | 
 |             parameterIndices[j + 1] != numParameters - 1) { | 
 |           derivativeKnots[++newKnotIndex] = temporaryParameters.segment(j, 3).mean(); | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   KnotVectorType temporaryKnots(averageKnots.size() + derivativeKnots.size()); | 
 |  | 
 |   std::merge(averageKnots.data(), averageKnots.data() + averageKnots.size(), derivativeKnots.data(), | 
 |              derivativeKnots.data() + derivativeKnots.size(), temporaryKnots.data()); | 
 |  | 
 |   // Number of knots (one for each point and derivative) plus spline order. | 
 |   DenseIndex numKnots = numParameters + numDerivatives + degree + 1; | 
 |   knots.resize(numKnots); | 
 |  | 
 |   knots.head(degree).fill(temporaryKnots[0]); | 
 |   knots.tail(degree).fill(temporaryKnots.template tail<1>()[0]); | 
 |   knots.segment(degree, temporaryKnots.size()) = temporaryKnots; | 
 | } | 
 |  | 
 | /** | 
 |  * \brief Computes chord length parameters which are required for spline interpolation. | 
 |  * \ingroup Splines_Module | 
 |  * | 
 |  * \param[in] pts The data points to which a spline should be fit. | 
 |  * \param[out] chord_lengths The resulting chord length vector. | 
 |  * | 
 |  * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data | 
 |  **/ | 
 | template <typename PointArrayType, typename KnotVectorType> | 
 | void ChordLengths(const PointArrayType& pts, KnotVectorType& chord_lengths) { | 
 |   typedef typename KnotVectorType::Scalar Scalar; | 
 |  | 
 |   const DenseIndex n = pts.cols(); | 
 |  | 
 |   // 1. compute the column-wise norms | 
 |   chord_lengths.resize(pts.cols()); | 
 |   chord_lengths[0] = 0; | 
 |   chord_lengths.rightCols(n - 1) = | 
 |       (pts.array().leftCols(n - 1) - pts.array().rightCols(n - 1)).matrix().colwise().norm(); | 
 |  | 
 |   // 2. compute the partial sums | 
 |   std::partial_sum(chord_lengths.data(), chord_lengths.data() + n, chord_lengths.data()); | 
 |  | 
 |   // 3. normalize the data | 
 |   chord_lengths /= chord_lengths(n - 1); | 
 |   chord_lengths(n - 1) = Scalar(1); | 
 | } | 
 |  | 
 | /** | 
 |  * \brief Spline fitting methods. | 
 |  * \ingroup Splines_Module | 
 |  **/ | 
 | template <typename SplineType> | 
 | struct SplineFitting { | 
 |   typedef typename SplineType::KnotVectorType KnotVectorType; | 
 |   typedef typename SplineType::ParameterVectorType ParameterVectorType; | 
 |  | 
 |   /** | 
 |    * \brief Fits an interpolating Spline to the given data points. | 
 |    * | 
 |    * \param pts The points for which an interpolating spline will be computed. | 
 |    * \param degree The degree of the interpolating spline. | 
 |    * | 
 |    * \returns A spline interpolating the initially provided points. | 
 |    **/ | 
 |   template <typename PointArrayType> | 
 |   static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree); | 
 |  | 
 |   /** | 
 |    * \brief Fits an interpolating Spline to the given data points. | 
 |    * | 
 |    * \param pts The points for which an interpolating spline will be computed. | 
 |    * \param degree The degree of the interpolating spline. | 
 |    * \param knot_parameters The knot parameters for the interpolation. | 
 |    * | 
 |    * \returns A spline interpolating the initially provided points. | 
 |    **/ | 
 |   template <typename PointArrayType> | 
 |   static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters); | 
 |  | 
 |   /** | 
 |    * \brief Fits an interpolating spline to the given data points and | 
 |    * derivatives. | 
 |    * | 
 |    * \param points The points for which an interpolating spline will be computed. | 
 |    * \param derivatives The desired derivatives of the interpolating spline at interpolation | 
 |    *                    points. | 
 |    * \param derivativeIndices An array indicating which point each derivative belongs to. This | 
 |    *                          must be the same size as @a derivatives. | 
 |    * \param degree The degree of the interpolating spline. | 
 |    * | 
 |    * \returns A spline interpolating @a points with @a derivatives at those points. | 
 |    * | 
 |    * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008. | 
 |    * Curve interpolation with directional constraints for engineering design. | 
 |    * Engineering with Computers | 
 |    **/ | 
 |   template <typename PointArrayType, typename IndexArray> | 
 |   static SplineType InterpolateWithDerivatives(const PointArrayType& points, const PointArrayType& derivatives, | 
 |                                                const IndexArray& derivativeIndices, const unsigned int degree); | 
 |  | 
 |   /** | 
 |    * \brief Fits an interpolating spline to the given data points and derivatives. | 
 |    * | 
 |    * \param points The points for which an interpolating spline will be computed. | 
 |    * \param derivatives The desired derivatives of the interpolating spline at interpolation points. | 
 |    * \param derivativeIndices An array indicating which point each derivative belongs to. This | 
 |    *                          must be the same size as @a derivatives. | 
 |    * \param degree The degree of the interpolating spline. | 
 |    * \param parameters The parameters corresponding to the interpolation points. | 
 |    * | 
 |    * \returns A spline interpolating @a points with @a derivatives at those points. | 
 |    * | 
 |    * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008. | 
 |    * Curve interpolation with directional constraints for engineering design. | 
 |    * Engineering with Computers | 
 |    */ | 
 |   template <typename PointArrayType, typename IndexArray> | 
 |   static SplineType InterpolateWithDerivatives(const PointArrayType& points, const PointArrayType& derivatives, | 
 |                                                const IndexArray& derivativeIndices, const unsigned int degree, | 
 |                                                const ParameterVectorType& parameters); | 
 | }; | 
 |  | 
 | template <typename SplineType> | 
 | template <typename PointArrayType> | 
 | SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree, | 
 |                                                   const KnotVectorType& knot_parameters) { | 
 |   typedef typename SplineType::KnotVectorType::Scalar Scalar; | 
 |   typedef typename SplineType::ControlPointVectorType ControlPointVectorType; | 
 |  | 
 |   typedef Matrix<Scalar, Dynamic, Dynamic> MatrixType; | 
 |  | 
 |   KnotVectorType knots; | 
 |   KnotAveraging(knot_parameters, degree, knots); | 
 |  | 
 |   DenseIndex n = pts.cols(); | 
 |   MatrixType A = MatrixType::Zero(n, n); | 
 |   for (DenseIndex i = 1; i < n - 1; ++i) { | 
 |     const DenseIndex span = SplineType::Span(knot_parameters[i], degree, knots); | 
 |  | 
 |     // The segment call should somehow be told the spline order at compile time. | 
 |     A.row(i).segment(span - degree, degree + 1) = SplineType::BasisFunctions(knot_parameters[i], degree, knots); | 
 |   } | 
 |   A(0, 0) = 1.0; | 
 |   A(n - 1, n - 1) = 1.0; | 
 |  | 
 |   HouseholderQR<MatrixType> qr(A); | 
 |  | 
 |   // Here, we are creating a temporary due to an Eigen issue. | 
 |   ControlPointVectorType ctrls = qr.solve(MatrixType(pts.transpose())).transpose(); | 
 |  | 
 |   return SplineType(knots, ctrls); | 
 | } | 
 |  | 
 | template <typename SplineType> | 
 | template <typename PointArrayType> | 
 | SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree) { | 
 |   KnotVectorType chord_lengths;  // knot parameters | 
 |   ChordLengths(pts, chord_lengths); | 
 |   return Interpolate(pts, degree, chord_lengths); | 
 | } | 
 |  | 
 | template <typename SplineType> | 
 | template <typename PointArrayType, typename IndexArray> | 
 | SplineType SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points, | 
 |                                                                  const PointArrayType& derivatives, | 
 |                                                                  const IndexArray& derivativeIndices, | 
 |                                                                  const unsigned int degree, | 
 |                                                                  const ParameterVectorType& parameters) { | 
 |   typedef typename SplineType::KnotVectorType::Scalar Scalar; | 
 |   typedef typename SplineType::ControlPointVectorType ControlPointVectorType; | 
 |  | 
 |   typedef Matrix<Scalar, Dynamic, Dynamic> MatrixType; | 
 |  | 
 |   const DenseIndex n = points.cols() + derivatives.cols(); | 
 |  | 
 |   KnotVectorType knots; | 
 |  | 
 |   KnotAveragingWithDerivatives(parameters, degree, derivativeIndices, knots); | 
 |  | 
 |   // fill matrix | 
 |   MatrixType A = MatrixType::Zero(n, n); | 
 |  | 
 |   // Use these dimensions for quicker populating, then transpose for solving. | 
 |   MatrixType b(points.rows(), n); | 
 |  | 
 |   DenseIndex startRow; | 
 |   DenseIndex derivativeStart; | 
 |  | 
 |   // End derivatives. | 
 |   if (derivativeIndices[0] == 0) { | 
 |     A.template block<1, 2>(1, 0) << -1, 1; | 
 |  | 
 |     Scalar y = (knots(degree + 1) - knots(0)) / degree; | 
 |     b.col(1) = y * derivatives.col(0); | 
 |  | 
 |     startRow = 2; | 
 |     derivativeStart = 1; | 
 |   } else { | 
 |     startRow = 1; | 
 |     derivativeStart = 0; | 
 |   } | 
 |   if (derivativeIndices[derivatives.cols() - 1] == points.cols() - 1) { | 
 |     A.template block<1, 2>(n - 2, n - 2) << -1, 1; | 
 |  | 
 |     Scalar y = (knots(knots.size() - 1) - knots(knots.size() - (degree + 2))) / degree; | 
 |     b.col(b.cols() - 2) = y * derivatives.col(derivatives.cols() - 1); | 
 |   } | 
 |  | 
 |   DenseIndex row = startRow; | 
 |   DenseIndex derivativeIndex = derivativeStart; | 
 |   for (DenseIndex i = 1; i < parameters.size() - 1; ++i) { | 
 |     const DenseIndex span = SplineType::Span(parameters[i], degree, knots); | 
 |  | 
 |     if (derivativeIndex < derivativeIndices.size() && derivativeIndices[derivativeIndex] == i) { | 
 |       A.block(row, span - degree, 2, degree + 1) = | 
 |           SplineType::BasisFunctionDerivatives(parameters[i], 1, degree, knots); | 
 |  | 
 |       b.col(row++) = points.col(i); | 
 |       b.col(row++) = derivatives.col(derivativeIndex++); | 
 |     } else { | 
 |       A.row(row).segment(span - degree, degree + 1) = SplineType::BasisFunctions(parameters[i], degree, knots); | 
 |       b.col(row++) = points.col(i); | 
 |     } | 
 |   } | 
 |   b.col(0) = points.col(0); | 
 |   b.col(b.cols() - 1) = points.col(points.cols() - 1); | 
 |   A(0, 0) = 1; | 
 |   A(n - 1, n - 1) = 1; | 
 |  | 
 |   // Solve | 
 |   FullPivLU<MatrixType> lu(A); | 
 |   ControlPointVectorType controlPoints = lu.solve(MatrixType(b.transpose())).transpose(); | 
 |  | 
 |   SplineType spline(knots, controlPoints); | 
 |  | 
 |   return spline; | 
 | } | 
 |  | 
 | template <typename SplineType> | 
 | template <typename PointArrayType, typename IndexArray> | 
 | SplineType SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points, | 
 |                                                                  const PointArrayType& derivatives, | 
 |                                                                  const IndexArray& derivativeIndices, | 
 |                                                                  const unsigned int degree) { | 
 |   ParameterVectorType parameters; | 
 |   ChordLengths(points, parameters); | 
 |   return InterpolateWithDerivatives(points, derivatives, derivativeIndices, degree, parameters); | 
 | } | 
 | }  // namespace Eigen | 
 |  | 
 | #endif  // EIGEN_SPLINE_FITTING_H |