| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Ilya Baran <ibaran@mit.edu> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/StdVector> | 
 | #include <Eigen/Geometry> | 
 | #include <unsupported/Eigen/BVH> | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | template <typename Scalar, int Dim> | 
 | AlignedBox<Scalar, Dim> bounding_box(const Matrix<Scalar, Dim, 1> &v) { | 
 |   return AlignedBox<Scalar, Dim>(v); | 
 | } | 
 |  | 
 | }  // namespace Eigen | 
 |  | 
 | template <int Dim> | 
 | struct Ball { | 
 |   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(double, Dim) | 
 |  | 
 |   typedef Matrix<double, Dim, 1> VectorType; | 
 |  | 
 |   Ball() {} | 
 |   Ball(const VectorType &c, double r) : center(c), radius(r) {} | 
 |  | 
 |   VectorType center; | 
 |   double radius; | 
 | }; | 
 | template <int Dim> | 
 | AlignedBox<double, Dim> bounding_box(const Ball<Dim> &b) { | 
 |   return AlignedBox<double, Dim>(b.center.array() - b.radius, b.center.array() + b.radius); | 
 | } | 
 |  | 
 | inline double SQR(double x) { return x * x; } | 
 |  | 
 | template <int Dim> | 
 | struct BallPointStuff  // this class provides functions to be both an intersector and a minimizer, both for a ball and a | 
 |                        // point and for two trees | 
 | { | 
 |   typedef double Scalar; | 
 |   typedef Matrix<double, Dim, 1> VectorType; | 
 |   typedef Ball<Dim> BallType; | 
 |   typedef AlignedBox<double, Dim> BoxType; | 
 |  | 
 |   BallPointStuff() : calls(0), count(0) {} | 
 |   BallPointStuff(const VectorType &inP) : p(inP), calls(0), count(0) {} | 
 |  | 
 |   bool intersectVolume(const BoxType &r) { | 
 |     ++calls; | 
 |     return r.contains(p); | 
 |   } | 
 |   bool intersectObject(const BallType &b) { | 
 |     ++calls; | 
 |     if ((b.center - p).squaredNorm() < SQR(b.radius)) ++count; | 
 |     return false;  // continue | 
 |   } | 
 |  | 
 |   bool intersectVolumeVolume(const BoxType &r1, const BoxType &r2) { | 
 |     ++calls; | 
 |     return !(r1.intersection(r2)).isNull(); | 
 |   } | 
 |   bool intersectVolumeObject(const BoxType &r, const BallType &b) { | 
 |     ++calls; | 
 |     return r.squaredExteriorDistance(b.center) < SQR(b.radius); | 
 |   } | 
 |   bool intersectObjectVolume(const BallType &b, const BoxType &r) { | 
 |     ++calls; | 
 |     return r.squaredExteriorDistance(b.center) < SQR(b.radius); | 
 |   } | 
 |   bool intersectObjectObject(const BallType &b1, const BallType &b2) { | 
 |     ++calls; | 
 |     if ((b1.center - b2.center).norm() < b1.radius + b2.radius) ++count; | 
 |     return false; | 
 |   } | 
 |   bool intersectVolumeObject(const BoxType &r, const VectorType &v) { | 
 |     ++calls; | 
 |     return r.contains(v); | 
 |   } | 
 |   bool intersectObjectObject(const BallType &b, const VectorType &v) { | 
 |     ++calls; | 
 |     if ((b.center - v).squaredNorm() < SQR(b.radius)) ++count; | 
 |     return false; | 
 |   } | 
 |  | 
 |   double minimumOnVolume(const BoxType &r) { | 
 |     ++calls; | 
 |     return r.squaredExteriorDistance(p); | 
 |   } | 
 |   double minimumOnObject(const BallType &b) { | 
 |     ++calls; | 
 |     return (std::max)(0., (b.center - p).squaredNorm() - SQR(b.radius)); | 
 |   } | 
 |   double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) { | 
 |     ++calls; | 
 |     return r1.squaredExteriorDistance(r2); | 
 |   } | 
 |   double minimumOnVolumeObject(const BoxType &r, const BallType &b) { | 
 |     ++calls; | 
 |     return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius)); | 
 |   } | 
 |   double minimumOnObjectVolume(const BallType &b, const BoxType &r) { | 
 |     ++calls; | 
 |     return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius)); | 
 |   } | 
 |   double minimumOnObjectObject(const BallType &b1, const BallType &b2) { | 
 |     ++calls; | 
 |     return SQR((std::max)(0., (b1.center - b2.center).norm() - b1.radius - b2.radius)); | 
 |   } | 
 |   double minimumOnVolumeObject(const BoxType &r, const VectorType &v) { | 
 |     ++calls; | 
 |     return r.squaredExteriorDistance(v); | 
 |   } | 
 |   double minimumOnObjectObject(const BallType &b, const VectorType &v) { | 
 |     ++calls; | 
 |     return SQR((std::max)(0., (b.center - v).norm() - b.radius)); | 
 |   } | 
 |  | 
 |   VectorType p; | 
 |   int calls; | 
 |   int count; | 
 | }; | 
 |  | 
 | template <int Dim> | 
 | struct TreeTest { | 
 |   typedef Matrix<double, Dim, 1> VectorType; | 
 |   typedef std::vector<VectorType, aligned_allocator<VectorType> > VectorTypeList; | 
 |   typedef Ball<Dim> BallType; | 
 |   typedef std::vector<BallType, aligned_allocator<BallType> > BallTypeList; | 
 |   typedef AlignedBox<double, Dim> BoxType; | 
 |  | 
 |   void testIntersect1() { | 
 |     BallTypeList b; | 
 |     for (int i = 0; i < 500; ++i) { | 
 |       b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.))); | 
 |     } | 
 |     KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); | 
 |  | 
 |     VectorType pt = VectorType::Random(); | 
 |     BallPointStuff<Dim> i1(pt), i2(pt); | 
 |  | 
 |     for (int i = 0; i < (int)b.size(); ++i) i1.intersectObject(b[i]); | 
 |  | 
 |     BVIntersect(tree, i2); | 
 |  | 
 |     VERIFY(i1.count == i2.count); | 
 |   } | 
 |  | 
 |   void testMinimize1() { | 
 |     BallTypeList b; | 
 |     for (int i = 0; i < 500; ++i) { | 
 |       b.push_back(BallType(VectorType::Random(), 0.01 * internal::random(0., 1.))); | 
 |     } | 
 |     KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); | 
 |  | 
 |     VectorType pt = VectorType::Random(); | 
 |     BallPointStuff<Dim> i1(pt), i2(pt); | 
 |  | 
 |     double m1 = (std::numeric_limits<double>::max)(), m2 = m1; | 
 |  | 
 |     for (int i = 0; i < (int)b.size(); ++i) m1 = (std::min)(m1, i1.minimumOnObject(b[i])); | 
 |  | 
 |     m2 = BVMinimize(tree, i2); | 
 |  | 
 |     VERIFY_IS_APPROX(m1, m2); | 
 |   } | 
 |  | 
 |   void testIntersect2() { | 
 |     BallTypeList b; | 
 |     VectorTypeList v; | 
 |  | 
 |     for (int i = 0; i < 50; ++i) { | 
 |       b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.))); | 
 |       for (int j = 0; j < 3; ++j) v.push_back(VectorType::Random()); | 
 |     } | 
 |  | 
 |     KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); | 
 |     KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end()); | 
 |  | 
 |     BallPointStuff<Dim> i1, i2; | 
 |  | 
 |     for (int i = 0; i < (int)b.size(); ++i) | 
 |       for (int j = 0; j < (int)v.size(); ++j) i1.intersectObjectObject(b[i], v[j]); | 
 |  | 
 |     BVIntersect(tree, vTree, i2); | 
 |  | 
 |     VERIFY(i1.count == i2.count); | 
 |   } | 
 |  | 
 |   void testMinimize2() { | 
 |     BallTypeList b; | 
 |     VectorTypeList v; | 
 |  | 
 |     for (int i = 0; i < 50; ++i) { | 
 |       b.push_back(BallType(VectorType::Random(), 1e-7 + 1e-6 * internal::random(0., 1.))); | 
 |       for (int j = 0; j < 3; ++j) v.push_back(VectorType::Random()); | 
 |     } | 
 |  | 
 |     KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); | 
 |     KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end()); | 
 |  | 
 |     BallPointStuff<Dim> i1, i2; | 
 |  | 
 |     double m1 = (std::numeric_limits<double>::max)(), m2 = m1; | 
 |  | 
 |     for (int i = 0; i < (int)b.size(); ++i) | 
 |       for (int j = 0; j < (int)v.size(); ++j) m1 = (std::min)(m1, i1.minimumOnObjectObject(b[i], v[j])); | 
 |  | 
 |     m2 = BVMinimize(tree, vTree, i2); | 
 |  | 
 |     VERIFY_IS_APPROX(m1, m2); | 
 |   } | 
 | }; | 
 |  | 
 | EIGEN_DECLARE_TEST(BVH) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 | #ifdef EIGEN_TEST_PART_1 | 
 |     TreeTest<2> test2; | 
 |     CALL_SUBTEST(test2.testIntersect1()); | 
 |     CALL_SUBTEST(test2.testMinimize1()); | 
 |     CALL_SUBTEST(test2.testIntersect2()); | 
 |     CALL_SUBTEST(test2.testMinimize2()); | 
 | #endif | 
 |  | 
 | #ifdef EIGEN_TEST_PART_2 | 
 |     TreeTest<3> test3; | 
 |     CALL_SUBTEST(test3.testIntersect1()); | 
 |     CALL_SUBTEST(test3.testMinimize1()); | 
 |     CALL_SUBTEST(test3.testIntersect2()); | 
 |     CALL_SUBTEST(test3.testMinimize2()); | 
 | #endif | 
 |  | 
 | #ifdef EIGEN_TEST_PART_3 | 
 |     TreeTest<4> test4; | 
 |     CALL_SUBTEST(test4.testIntersect1()); | 
 |     CALL_SUBTEST(test4.testMinimize1()); | 
 |     CALL_SUBTEST(test4.testIntersect2()); | 
 |     CALL_SUBTEST(test4.testMinimize2()); | 
 | #endif | 
 |   } | 
 | } |