|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <complex> | 
|  | #include <cmath> | 
|  | #include <Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::Tensor; | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_1D_fft_ifft_invariant(int sequence_length) { | 
|  | Tensor<double, 1, DataLayout> tensor(sequence_length); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | array<int, 1> fft; | 
|  | fft[0] = 0; | 
|  |  | 
|  | Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft; | 
|  | Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft_ifft; | 
|  |  | 
|  | tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); | 
|  | tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft); | 
|  |  | 
|  | VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), sequence_length); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), sequence_length); | 
|  |  | 
|  | for (int i = 0; i < sequence_length; ++i) { | 
|  | VERIFY_IS_APPROX(static_cast<float>(tensor(i)), static_cast<float>(std::real(tensor_after_fft_ifft(i)))); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_2D_fft_ifft_invariant(int dim0, int dim1) { | 
|  | Tensor<double, 2, DataLayout> tensor(dim0, dim1); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | array<int, 2> fft; | 
|  | fft[0] = 0; | 
|  | fft[1] = 1; | 
|  |  | 
|  | Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft; | 
|  | Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft_ifft; | 
|  |  | 
|  | tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); | 
|  | tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft); | 
|  |  | 
|  | VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1); | 
|  |  | 
|  | for (int i = 0; i < dim0; ++i) { | 
|  | for (int j = 0; j < dim1; ++j) { | 
|  | // std::cout << "[" << i << "][" << j << "]" <<  "  Original data: " << tensor(i,j) << " Transformed data:" << | 
|  | // tensor_after_fft_ifft(i,j) << std::endl; | 
|  | VERIFY_IS_APPROX(static_cast<float>(tensor(i, j)), static_cast<float>(std::real(tensor_after_fft_ifft(i, j)))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_3D_fft_ifft_invariant(int dim0, int dim1, int dim2) { | 
|  | Tensor<double, 3, DataLayout> tensor(dim0, dim1, dim2); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | array<int, 3> fft; | 
|  | fft[0] = 0; | 
|  | fft[1] = 1; | 
|  | fft[2] = 2; | 
|  |  | 
|  | Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft; | 
|  | Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft_ifft; | 
|  |  | 
|  | tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); | 
|  | tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft); | 
|  |  | 
|  | VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2); | 
|  |  | 
|  | for (int i = 0; i < dim0; ++i) { | 
|  | for (int j = 0; j < dim1; ++j) { | 
|  | for (int k = 0; k < dim2; ++k) { | 
|  | VERIFY_IS_APPROX(static_cast<float>(tensor(i, j, k)), | 
|  | static_cast<float>(std::real(tensor_after_fft_ifft(i, j, k)))); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_sub_fft_ifft_invariant(int dim0, int dim1, int dim2, int dim3) { | 
|  | Tensor<double, 4, DataLayout> tensor(dim0, dim1, dim2, dim3); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | array<int, 2> fft; | 
|  | fft[0] = 2; | 
|  | fft[1] = 0; | 
|  |  | 
|  | Tensor<std::complex<double>, 4, DataLayout> tensor_after_fft; | 
|  | Tensor<double, 4, DataLayout> tensor_after_fft_ifft; | 
|  |  | 
|  | tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); | 
|  | tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::RealPart, Eigen::FFT_REVERSE>(fft); | 
|  |  | 
|  | VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft.dimension(3), dim3); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2); | 
|  | VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(3), dim3); | 
|  |  | 
|  | for (int i = 0; i < dim0; ++i) { | 
|  | for (int j = 0; j < dim1; ++j) { | 
|  | for (int k = 0; k < dim2; ++k) { | 
|  | for (int l = 0; l < dim3; ++l) { | 
|  | VERIFY_IS_APPROX(static_cast<float>(tensor(i, j, k, l)), | 
|  | static_cast<float>(tensor_after_fft_ifft(i, j, k, l))); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_ifft) { | 
|  | CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(4)); | 
|  | CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(16)); | 
|  | CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(32)); | 
|  | CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(1024 * 1024)); | 
|  |  | 
|  | CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(4, 4)); | 
|  | CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(8, 16)); | 
|  | CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(16, 32)); | 
|  | CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(1024, 1024)); | 
|  |  | 
|  | CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(4, 4, 4)); | 
|  | CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(8, 16, 32)); | 
|  | CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(16, 4, 8)); | 
|  | CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(256, 256, 256)); | 
|  |  | 
|  | CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(4, 4, 4, 4)); | 
|  | CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(8, 16, 32, 64)); | 
|  | CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(16, 4, 8, 12)); | 
|  | CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(64, 64, 64, 64)); | 
|  | } |