| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <limits> | 
 | #include <numeric> | 
 | #include <Eigen/CXX11/Tensor> | 
 |  | 
 | using Eigen::Tensor; | 
 |  | 
 | template <int DataLayout, typename Type = float, bool Exclusive = false> | 
 | static void test_1d_scan() { | 
 |   int size = 50; | 
 |   Tensor<Type, 1, DataLayout> tensor(size); | 
 |   tensor.setRandom(); | 
 |   Tensor<Type, 1, DataLayout> result = tensor.cumsum(0, Exclusive); | 
 |  | 
 |   VERIFY_IS_EQUAL(tensor.dimension(0), result.dimension(0)); | 
 |  | 
 |   float accum = 0; | 
 |   for (int i = 0; i < size; i++) { | 
 |     if (Exclusive) { | 
 |       VERIFY_IS_EQUAL(result(i), accum); | 
 |       accum += tensor(i); | 
 |     } else { | 
 |       accum += tensor(i); | 
 |       VERIFY_IS_EQUAL(result(i), accum); | 
 |     } | 
 |   } | 
 |  | 
 |   accum = 1; | 
 |   result = tensor.cumprod(0, Exclusive); | 
 |   for (int i = 0; i < size; i++) { | 
 |     if (Exclusive) { | 
 |       VERIFY_IS_EQUAL(result(i), accum); | 
 |       accum *= tensor(i); | 
 |     } else { | 
 |       accum *= tensor(i); | 
 |       VERIFY_IS_EQUAL(result(i), accum); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout, typename Type = float> | 
 | static void test_4d_scan() { | 
 |   int size = 5; | 
 |   Tensor<Type, 4, DataLayout> tensor(size, size, size, size); | 
 |   tensor.setRandom(); | 
 |  | 
 |   Tensor<Type, 4, DataLayout> result(size, size, size, size); | 
 |  | 
 |   result = tensor.cumsum(0); | 
 |   float accum = 0; | 
 |   for (int i = 0; i < size; i++) { | 
 |     accum += tensor(i, 1, 2, 3); | 
 |     VERIFY_IS_EQUAL(result(i, 1, 2, 3), accum); | 
 |   } | 
 |   result = tensor.cumsum(1); | 
 |   accum = 0; | 
 |   for (int i = 0; i < size; i++) { | 
 |     accum += tensor(1, i, 2, 3); | 
 |     VERIFY_IS_EQUAL(result(1, i, 2, 3), accum); | 
 |   } | 
 |   result = tensor.cumsum(2); | 
 |   accum = 0; | 
 |   for (int i = 0; i < size; i++) { | 
 |     accum += tensor(1, 2, i, 3); | 
 |     VERIFY_IS_EQUAL(result(1, 2, i, 3), accum); | 
 |   } | 
 |   result = tensor.cumsum(3); | 
 |   accum = 0; | 
 |   for (int i = 0; i < size; i++) { | 
 |     accum += tensor(1, 2, 3, i); | 
 |     VERIFY_IS_EQUAL(result(1, 2, 3, i), accum); | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_tensor_maps() { | 
 |   int inputs[20]; | 
 |   TensorMap<Tensor<int, 1, DataLayout> > tensor_map(inputs, 20); | 
 |   tensor_map.setRandom(); | 
 |  | 
 |   Tensor<int, 1, DataLayout> result = tensor_map.cumsum(0); | 
 |  | 
 |   int accum = 0; | 
 |   for (int i = 0; i < 20; ++i) { | 
 |     accum += tensor_map(i); | 
 |     VERIFY_IS_EQUAL(result(i), accum); | 
 |   } | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(cxx11_tensor_scan) { | 
 |   CALL_SUBTEST((test_1d_scan<ColMajor, float, true>())); | 
 |   CALL_SUBTEST((test_1d_scan<ColMajor, float, false>())); | 
 |   CALL_SUBTEST((test_1d_scan<RowMajor, float, true>())); | 
 |   CALL_SUBTEST((test_1d_scan<RowMajor, float, false>())); | 
 |   CALL_SUBTEST(test_4d_scan<ColMajor>()); | 
 |   CALL_SUBTEST(test_4d_scan<RowMajor>()); | 
 |   CALL_SUBTEST(test_tensor_maps<ColMajor>()); | 
 |   CALL_SUBTEST(test_tensor_maps<RowMajor>()); | 
 | } |