| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_SPARSEASSIGN_H | 
 | #define EIGEN_SPARSEASSIGN_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | template <typename Derived> | 
 | template <typename OtherDerived> | 
 | Derived &SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived> &other) { | 
 |   internal::call_assignment_no_alias(derived(), other.derived()); | 
 |   return derived(); | 
 | } | 
 |  | 
 | template <typename Derived> | 
 | template <typename OtherDerived> | 
 | Derived &SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived> &other) { | 
 |   // TODO use the evaluator mechanism | 
 |   other.evalTo(derived()); | 
 |   return derived(); | 
 | } | 
 |  | 
 | template <typename Derived> | 
 | template <typename OtherDerived> | 
 | inline Derived &SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived> &other) { | 
 |   // by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine | 
 |   internal::Assignment<Derived, OtherDerived, internal::assign_op<Scalar, typename OtherDerived::Scalar>>::run( | 
 |       derived(), other.derived(), internal::assign_op<Scalar, typename OtherDerived::Scalar>()); | 
 |   return derived(); | 
 | } | 
 |  | 
 | template <typename Derived> | 
 | inline Derived &SparseMatrixBase<Derived>::operator=(const Derived &other) { | 
 |   internal::call_assignment_no_alias(derived(), other.derived()); | 
 |   return derived(); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <> | 
 | struct storage_kind_to_evaluator_kind<Sparse> { | 
 |   typedef IteratorBased Kind; | 
 | }; | 
 |  | 
 | template <> | 
 | struct storage_kind_to_shape<Sparse> { | 
 |   typedef SparseShape Shape; | 
 | }; | 
 |  | 
 | struct Sparse2Sparse {}; | 
 | struct Sparse2Dense {}; | 
 |  | 
 | template <> | 
 | struct AssignmentKind<SparseShape, SparseShape> { | 
 |   typedef Sparse2Sparse Kind; | 
 | }; | 
 | template <> | 
 | struct AssignmentKind<SparseShape, SparseTriangularShape> { | 
 |   typedef Sparse2Sparse Kind; | 
 | }; | 
 | template <> | 
 | struct AssignmentKind<DenseShape, SparseShape> { | 
 |   typedef Sparse2Dense Kind; | 
 | }; | 
 | template <> | 
 | struct AssignmentKind<DenseShape, SparseTriangularShape> { | 
 |   typedef Sparse2Dense Kind; | 
 | }; | 
 |  | 
 | template <typename DstXprType, typename SrcXprType> | 
 | void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src) { | 
 |   typedef typename DstXprType::Scalar Scalar; | 
 |   typedef internal::evaluator<DstXprType> DstEvaluatorType; | 
 |   typedef internal::evaluator<SrcXprType> SrcEvaluatorType; | 
 |  | 
 |   SrcEvaluatorType srcEvaluator(src); | 
 |  | 
 |   constexpr bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit); | 
 |   const Index outerEvaluationSize = (SrcEvaluatorType::Flags & RowMajorBit) ? src.rows() : src.cols(); | 
 |  | 
 |   Index reserveSize = 0; | 
 |   for (Index j = 0; j < outerEvaluationSize; ++j) | 
 |     for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) reserveSize++; | 
 |  | 
 |   if ((!transpose) && src.isRValue()) { | 
 |     // eval without temporary | 
 |     dst.resize(src.rows(), src.cols()); | 
 |     dst.setZero(); | 
 |     dst.reserve(reserveSize); | 
 |     for (Index j = 0; j < outerEvaluationSize; ++j) { | 
 |       dst.startVec(j); | 
 |       for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) { | 
 |         Scalar v = it.value(); | 
 |         dst.insertBackByOuterInner(j, it.index()) = v; | 
 |       } | 
 |     } | 
 |     dst.finalize(); | 
 |   } else { | 
 |     // eval through a temporary | 
 |     eigen_assert((((internal::traits<DstXprType>::SupportedAccessPatterns & OuterRandomAccessPattern) == | 
 |                    OuterRandomAccessPattern) || | 
 |                   (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) && | 
 |                  "the transpose operation is supposed to be handled in SparseMatrix::operator="); | 
 |  | 
 |     enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) }; | 
 |  | 
 |     DstXprType temp(src.rows(), src.cols()); | 
 |  | 
 |     temp.reserve(reserveSize); | 
 |     for (Index j = 0; j < outerEvaluationSize; ++j) { | 
 |       temp.startVec(j); | 
 |       for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) { | 
 |         Scalar v = it.value(); | 
 |         temp.insertBackByOuterInner(Flip ? it.index() : j, Flip ? j : it.index()) = v; | 
 |       } | 
 |     } | 
 |     temp.finalize(); | 
 |  | 
 |     dst = temp.markAsRValue(); | 
 |   } | 
 | } | 
 |  | 
 | // Generic Sparse to Sparse assignment | 
 | template <typename DstXprType, typename SrcXprType, typename Functor> | 
 | struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse> { | 
 |   static void run(DstXprType &dst, const SrcXprType &src, | 
 |                   const internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar> & /*func*/) { | 
 |     assign_sparse_to_sparse(dst.derived(), src.derived()); | 
 |   } | 
 | }; | 
 |  | 
 | // Generic Sparse to Dense assignment | 
 | template <typename DstXprType, typename SrcXprType, typename Functor, typename Weak> | 
 | struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense, Weak> { | 
 |   static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) { | 
 |     if (internal::is_same<Functor, | 
 |                           internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>>::value) | 
 |       dst.setZero(); | 
 |  | 
 |     internal::evaluator<SrcXprType> srcEval(src); | 
 |     resize_if_allowed(dst, src, func); | 
 |     internal::evaluator<DstXprType> dstEval(dst); | 
 |  | 
 |     const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags & RowMajorBit) ? src.rows() : src.cols(); | 
 |     for (Index j = 0; j < outerEvaluationSize; ++j) | 
 |       for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval, j); i; ++i) | 
 |         func.assignCoeff(dstEval.coeffRef(i.row(), i.col()), i.value()); | 
 |   } | 
 | }; | 
 |  | 
 | // Specialization for dense ?= dense +/- sparse and dense ?= sparse +/- dense | 
 | template <typename DstXprType, typename Func1, typename Func2> | 
 | struct assignment_from_dense_op_sparse { | 
 |   template <typename SrcXprType, typename InitialFunc> | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, | 
 |                                                         const InitialFunc & /*func*/) { | 
 | #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN | 
 |     EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN | 
 | #endif | 
 |  | 
 |     call_assignment_no_alias(dst, src.lhs(), Func1()); | 
 |     call_assignment_no_alias(dst, src.rhs(), Func2()); | 
 |   } | 
 |  | 
 |   // Specialization for dense1 = sparse + dense2; -> dense1 = dense2; dense1 += sparse; | 
 |   template <typename Lhs, typename Rhs, typename Scalar> | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
 |       std::enable_if_t<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape, DenseShape>::value> | 
 |       run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_sum_op<Scalar, Scalar>, const Lhs, const Rhs> &src, | 
 |           const internal::assign_op<typename DstXprType::Scalar, Scalar> & /*func*/) { | 
 | #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN | 
 |     EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN | 
 | #endif | 
 |  | 
 |     // Apply the dense matrix first, then the sparse one. | 
 |     call_assignment_no_alias(dst, src.rhs(), Func1()); | 
 |     call_assignment_no_alias(dst, src.lhs(), Func2()); | 
 |   } | 
 |  | 
 |   // Specialization for dense1 = sparse - dense2; -> dense1 = -dense2; dense1 += sparse; | 
 |   template <typename Lhs, typename Rhs, typename Scalar> | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
 |       std::enable_if_t<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape, DenseShape>::value> | 
 |       run(DstXprType &dst, | 
 |           const CwiseBinaryOp<internal::scalar_difference_op<Scalar, Scalar>, const Lhs, const Rhs> &src, | 
 |           const internal::assign_op<typename DstXprType::Scalar, Scalar> & /*func*/) { | 
 | #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN | 
 |     EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN | 
 | #endif | 
 |  | 
 |     // Apply the dense matrix first, then the sparse one. | 
 |     call_assignment_no_alias(dst, -src.rhs(), Func1()); | 
 |     call_assignment_no_alias(dst, src.lhs(), add_assign_op<typename DstXprType::Scalar, typename Lhs::Scalar>()); | 
 |   } | 
 | }; | 
 |  | 
 | #define EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(ASSIGN_OP, BINOP, ASSIGN_OP2)                                        \ | 
 |   template <typename DstXprType, typename Lhs, typename Rhs, typename Scalar>                                   \ | 
 |   struct Assignment<                                                                                            \ | 
 |       DstXprType, CwiseBinaryOp<internal::BINOP<Scalar, Scalar>, const Lhs, const Rhs>,                         \ | 
 |       internal::ASSIGN_OP<typename DstXprType::Scalar, Scalar>, Sparse2Dense,                                   \ | 
 |       std::enable_if_t<internal::is_same<typename internal::evaluator_traits<Lhs>::Shape, DenseShape>::value || \ | 
 |                        internal::is_same<typename internal::evaluator_traits<Rhs>::Shape, DenseShape>::value>>  \ | 
 |       : assignment_from_dense_op_sparse<DstXprType,                                                             \ | 
 |                                         internal::ASSIGN_OP<typename DstXprType::Scalar, typename Lhs::Scalar>, \ | 
 |                                         internal::ASSIGN_OP2<typename DstXprType::Scalar, typename Rhs::Scalar>> {} | 
 |  | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_sum_op, add_assign_op); | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op, scalar_sum_op, add_assign_op); | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op, scalar_sum_op, sub_assign_op); | 
 |  | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_difference_op, sub_assign_op); | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op, scalar_difference_op, sub_assign_op); | 
 | EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op, scalar_difference_op, add_assign_op); | 
 |  | 
 | // Specialization for "dst = dec.solve(rhs)" | 
 | // NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error | 
 | template <typename DstXprType, typename DecType, typename RhsType, typename Scalar> | 
 | struct Assignment<DstXprType, Solve<DecType, RhsType>, internal::assign_op<Scalar, Scalar>, Sparse2Sparse> { | 
 |   typedef Solve<DecType, RhsType> SrcXprType; | 
 |   static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar, Scalar> &) { | 
 |     Index dstRows = src.rows(); | 
 |     Index dstCols = src.cols(); | 
 |     if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); | 
 |  | 
 |     src.dec()._solve_impl(src.rhs(), dst); | 
 |   } | 
 | }; | 
 |  | 
 | struct Diagonal2Sparse {}; | 
 |  | 
 | template <> | 
 | struct AssignmentKind<SparseShape, DiagonalShape> { | 
 |   typedef Diagonal2Sparse Kind; | 
 | }; | 
 |  | 
 | template <typename DstXprType, typename SrcXprType, typename Functor> | 
 | struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse> { | 
 |   typedef typename DstXprType::StorageIndex StorageIndex; | 
 |   typedef typename DstXprType::Scalar Scalar; | 
 |  | 
 |   template <int Options, typename AssignFunc> | 
 |   static void run(SparseMatrix<Scalar, Options, StorageIndex> &dst, const SrcXprType &src, const AssignFunc &func) { | 
 |     dst.assignDiagonal(src.diagonal(), func); | 
 |   } | 
 |  | 
 |   template <typename DstDerived> | 
 |   static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, | 
 |                   const internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar> & /*func*/) { | 
 |     dst.derived().diagonal() = src.diagonal(); | 
 |   } | 
 |  | 
 |   template <typename DstDerived> | 
 |   static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, | 
 |                   const internal::add_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar> & /*func*/) { | 
 |     dst.derived().diagonal() += src.diagonal(); | 
 |   } | 
 |  | 
 |   template <typename DstDerived> | 
 |   static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, | 
 |                   const internal::sub_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar> & /*func*/) { | 
 |     dst.derived().diagonal() -= src.diagonal(); | 
 |   } | 
 | }; | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_SPARSEASSIGN_H |