| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H | 
 | #define EIGEN_SPARSE_SELFADJOINTVIEW_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /** \ingroup SparseCore_Module | 
 |  * \class SparseSelfAdjointView | 
 |  * | 
 |  * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. | 
 |  * | 
 |  * \param MatrixType the type of the dense matrix storing the coefficients | 
 |  * \param Mode can be either \c #Lower or \c #Upper | 
 |  * | 
 |  * This class is an expression of a sefladjoint matrix from a triangular part of a matrix | 
 |  * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() | 
 |  * and most of the time this is the only way that it is used. | 
 |  * | 
 |  * \sa SparseMatrixBase::selfadjointView() | 
 |  */ | 
 | namespace internal { | 
 |  | 
 | template <typename MatrixType, unsigned int Mode> | 
 | struct traits<SparseSelfAdjointView<MatrixType, Mode> > : traits<MatrixType> {}; | 
 |  | 
 | template <int SrcMode, int DstMode, bool NonHermitian, typename MatrixType, int DestOrder> | 
 | void permute_symm_to_symm( | 
 |     const MatrixType& mat, | 
 |     SparseMatrix<typename MatrixType::Scalar, DestOrder, typename MatrixType::StorageIndex>& _dest, | 
 |     const typename MatrixType::StorageIndex* perm = 0); | 
 |  | 
 | template <int Mode, bool NonHermitian, typename MatrixType, int DestOrder> | 
 | void permute_symm_to_fullsymm( | 
 |     const MatrixType& mat, | 
 |     SparseMatrix<typename MatrixType::Scalar, DestOrder, typename MatrixType::StorageIndex>& _dest, | 
 |     const typename MatrixType::StorageIndex* perm = 0); | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | template <typename MatrixType, unsigned int Mode_> | 
 | class SparseSelfAdjointView : public EigenBase<SparseSelfAdjointView<MatrixType, Mode_> > { | 
 |  public: | 
 |   enum { | 
 |     Mode = Mode_, | 
 |     TransposeMode = ((int(Mode) & int(Upper)) ? Lower : 0) | ((int(Mode) & int(Lower)) ? Upper : 0), | 
 |     RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime, | 
 |     ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef EigenBase<SparseSelfAdjointView> Base; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::StorageIndex StorageIndex; | 
 |   typedef Matrix<StorageIndex, Dynamic, 1> VectorI; | 
 |   typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested; | 
 |   typedef internal::remove_all_t<MatrixTypeNested> MatrixTypeNested_; | 
 |  | 
 |   explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix) { | 
 |     eigen_assert(rows() == cols() && "SelfAdjointView is only for squared matrices"); | 
 |   } | 
 |  | 
 |   inline Index rows() const { return m_matrix.rows(); } | 
 |   inline Index cols() const { return m_matrix.cols(); } | 
 |  | 
 |   /** \internal \returns a reference to the nested matrix */ | 
 |   const MatrixTypeNested_& matrix() const { return m_matrix; } | 
 |   std::remove_reference_t<MatrixTypeNested>& matrix() { return m_matrix; } | 
 |  | 
 |   /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a | 
 |    * rhs. | 
 |    * | 
 |    * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix | 
 |    * product. Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing | 
 |    * the product. | 
 |    */ | 
 |   template <typename OtherDerived> | 
 |   Product<SparseSelfAdjointView, OtherDerived> operator*(const SparseMatrixBase<OtherDerived>& rhs) const { | 
 |     return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived()); | 
 |   } | 
 |  | 
 |   /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a | 
 |    * rhs. | 
 |    * | 
 |    * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix | 
 |    * product. Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing | 
 |    * the product. | 
 |    */ | 
 |   template <typename OtherDerived> | 
 |   friend Product<OtherDerived, SparseSelfAdjointView> operator*(const SparseMatrixBase<OtherDerived>& lhs, | 
 |                                                                 const SparseSelfAdjointView& rhs) { | 
 |     return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs); | 
 |   } | 
 |  | 
 |   /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ | 
 |   template <typename OtherDerived> | 
 |   Product<SparseSelfAdjointView, OtherDerived> operator*(const MatrixBase<OtherDerived>& rhs) const { | 
 |     return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived()); | 
 |   } | 
 |  | 
 |   /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ | 
 |   template <typename OtherDerived> | 
 |   friend Product<OtherDerived, SparseSelfAdjointView> operator*(const MatrixBase<OtherDerived>& lhs, | 
 |                                                                 const SparseSelfAdjointView& rhs) { | 
 |     return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs); | 
 |   } | 
 |  | 
 |   /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: | 
 |    * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. | 
 |    * | 
 |    * \returns a reference to \c *this | 
 |    * | 
 |    * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply | 
 |    * call this function with u.adjoint(). | 
 |    */ | 
 |   template <typename DerivedU> | 
 |   SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1)); | 
 |  | 
 |   /** \returns an expression of P H P^-1 */ | 
 |   // TODO implement twists in a more evaluator friendly fashion | 
 |   SparseSymmetricPermutationProduct<MatrixTypeNested_, Mode> twistedBy( | 
 |       const PermutationMatrix<Dynamic, Dynamic, StorageIndex>& perm) const { | 
 |     return SparseSymmetricPermutationProduct<MatrixTypeNested_, Mode>(m_matrix, perm); | 
 |   } | 
 |  | 
 |   template <typename SrcMatrixType, int SrcMode> | 
 |   SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType, SrcMode>& permutedMatrix) { | 
 |     internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) { | 
 |     PermutationMatrix<Dynamic, Dynamic, StorageIndex> pnull; | 
 |     return *this = src.twistedBy(pnull); | 
 |   } | 
 |  | 
 |   // Since we override the copy-assignment operator, we need to explicitly redeclare the copy-constructor | 
 |   EIGEN_DEFAULT_COPY_CONSTRUCTOR(SparseSelfAdjointView) | 
 |  | 
 |   template <typename SrcMatrixType, unsigned int SrcMode> | 
 |   SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType, SrcMode>& src) { | 
 |     PermutationMatrix<Dynamic, Dynamic, StorageIndex> pnull; | 
 |     return *this = src.twistedBy(pnull); | 
 |   } | 
 |  | 
 |   void resize(Index rows, Index cols) { | 
 |     EIGEN_ONLY_USED_FOR_DEBUG(rows); | 
 |     EIGEN_ONLY_USED_FOR_DEBUG(cols); | 
 |     eigen_assert(rows == this->rows() && cols == this->cols() && | 
 |                  "SparseSelfadjointView::resize() does not actually allow to resize."); | 
 |   } | 
 |  | 
 |  protected: | 
 |   MatrixTypeNested m_matrix; | 
 |   // mutable VectorI m_countPerRow; | 
 |   // mutable VectorI m_countPerCol; | 
 |  private: | 
 |   template <typename Dest> | 
 |   void evalTo(Dest&) const; | 
 | }; | 
 |  | 
 | /*************************************************************************** | 
 |  * Implementation of SparseMatrixBase methods | 
 |  ***************************************************************************/ | 
 |  | 
 | template <typename Derived> | 
 | template <unsigned int UpLo> | 
 | typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type | 
 | SparseMatrixBase<Derived>::selfadjointView() const { | 
 |   return SparseSelfAdjointView<const Derived, UpLo>(derived()); | 
 | } | 
 |  | 
 | template <typename Derived> | 
 | template <unsigned int UpLo> | 
 | typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type | 
 | SparseMatrixBase<Derived>::selfadjointView() { | 
 |   return SparseSelfAdjointView<Derived, UpLo>(derived()); | 
 | } | 
 |  | 
 | /*************************************************************************** | 
 |  * Implementation of SparseSelfAdjointView methods | 
 |  ***************************************************************************/ | 
 |  | 
 | template <typename MatrixType, unsigned int Mode> | 
 | template <typename DerivedU> | 
 | SparseSelfAdjointView<MatrixType, Mode>& SparseSelfAdjointView<MatrixType, Mode>::rankUpdate( | 
 |     const SparseMatrixBase<DerivedU>& u, const Scalar& alpha) { | 
 |   SparseMatrix<Scalar, (MatrixType::Flags & RowMajorBit) ? RowMajor : ColMajor> tmp = u * u.adjoint(); | 
 |   if (alpha == Scalar(0)) | 
 |     m_matrix = tmp.template triangularView<Mode>(); | 
 |   else | 
 |     m_matrix += alpha * tmp.template triangularView<Mode>(); | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | // TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> | 
 | //      in the future selfadjoint-ness should be defined by the expression traits | 
 | //      such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to | 
 | //      make it work) | 
 | template <typename MatrixType, unsigned int Mode> | 
 | struct evaluator_traits<SparseSelfAdjointView<MatrixType, Mode> > { | 
 |   typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; | 
 |   typedef SparseSelfAdjointShape Shape; | 
 | }; | 
 |  | 
 | struct SparseSelfAdjoint2Sparse {}; | 
 |  | 
 | template <> | 
 | struct AssignmentKind<SparseShape, SparseSelfAdjointShape> { | 
 |   typedef SparseSelfAdjoint2Sparse Kind; | 
 | }; | 
 | template <> | 
 | struct AssignmentKind<SparseSelfAdjointShape, SparseShape> { | 
 |   typedef Sparse2Sparse Kind; | 
 | }; | 
 |  | 
 | template <typename DstXprType, typename SrcXprType, typename Functor> | 
 | struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse> { | 
 |   typedef typename DstXprType::StorageIndex StorageIndex; | 
 |   typedef internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar> AssignOpType; | 
 |  | 
 |   template <typename DestScalar, int StorageOrder> | 
 |   static void run(SparseMatrix<DestScalar, StorageOrder, StorageIndex>& dst, const SrcXprType& src, | 
 |                   const AssignOpType& /*func*/) { | 
 |     internal::permute_symm_to_fullsymm<SrcXprType::Mode, false>(src.matrix(), dst); | 
 |   } | 
 |  | 
 |   // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced | 
 |   // to: | 
 |   template <typename DestScalar, int StorageOrder, typename AssignFunc> | 
 |   static void run(SparseMatrix<DestScalar, StorageOrder, StorageIndex>& dst, const SrcXprType& src, | 
 |                   const AssignFunc& func) { | 
 |     SparseMatrix<DestScalar, StorageOrder, StorageIndex> tmp(src.rows(), src.cols()); | 
 |     run(tmp, src, AssignOpType()); | 
 |     call_assignment_no_alias_no_transpose(dst, tmp, func); | 
 |   } | 
 |  | 
 |   template <typename DestScalar, int StorageOrder> | 
 |   static void run(SparseMatrix<DestScalar, StorageOrder, StorageIndex>& dst, const SrcXprType& src, | 
 |                   const internal::add_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /* func */) { | 
 |     SparseMatrix<DestScalar, StorageOrder, StorageIndex> tmp(src.rows(), src.cols()); | 
 |     run(tmp, src, AssignOpType()); | 
 |     dst += tmp; | 
 |   } | 
 |  | 
 |   template <typename DestScalar, int StorageOrder> | 
 |   static void run(SparseMatrix<DestScalar, StorageOrder, StorageIndex>& dst, const SrcXprType& src, | 
 |                   const internal::sub_assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /* func */) { | 
 |     SparseMatrix<DestScalar, StorageOrder, StorageIndex> tmp(src.rows(), src.cols()); | 
 |     run(tmp, src, AssignOpType()); | 
 |     dst -= tmp; | 
 |   } | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | /*************************************************************************** | 
 |  * Implementation of sparse self-adjoint time dense matrix | 
 |  ***************************************************************************/ | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType> | 
 | inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, | 
 |                                                   const AlphaType& alpha) { | 
 |   EIGEN_ONLY_USED_FOR_DEBUG(alpha); | 
 |  | 
 |   typedef typename internal::nested_eval<SparseLhsType, DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested; | 
 |   typedef internal::remove_all_t<SparseLhsTypeNested> SparseLhsTypeNestedCleaned; | 
 |   typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval; | 
 |   typedef typename LhsEval::InnerIterator LhsIterator; | 
 |   typedef typename SparseLhsType::Scalar LhsScalar; | 
 |  | 
 |   enum { | 
 |     LhsIsRowMajor = (LhsEval::Flags & RowMajorBit) == RowMajorBit, | 
 |     ProcessFirstHalf = ((Mode & (Upper | Lower)) == (Upper | Lower)) || ((Mode & Upper) && !LhsIsRowMajor) || | 
 |                        ((Mode & Lower) && LhsIsRowMajor), | 
 |     ProcessSecondHalf = !ProcessFirstHalf | 
 |   }; | 
 |  | 
 |   SparseLhsTypeNested lhs_nested(lhs); | 
 |   LhsEval lhsEval(lhs_nested); | 
 |  | 
 |   // work on one column at once | 
 |   for (Index k = 0; k < rhs.cols(); ++k) { | 
 |     for (Index j = 0; j < lhs.outerSize(); ++j) { | 
 |       LhsIterator i(lhsEval, j); | 
 |       // handle diagonal coeff | 
 |       if (ProcessSecondHalf) { | 
 |         while (i && i.index() < j) ++i; | 
 |         if (i && i.index() == j) { | 
 |           res.coeffRef(j, k) += alpha * i.value() * rhs.coeff(j, k); | 
 |           ++i; | 
 |         } | 
 |       } | 
 |  | 
 |       // premultiplied rhs for scatters | 
 |       typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha * rhs(j, k)); | 
 |       // accumulator for partial scalar product | 
 |       typename DenseResType::Scalar res_j(0); | 
 |       for (; (ProcessFirstHalf ? i && i.index() < j : i); ++i) { | 
 |         LhsScalar lhs_ij = i.value(); | 
 |         if (!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij); | 
 |         res_j += lhs_ij * rhs.coeff(i.index(), k); | 
 |         res(i.index(), k) += numext::conj(lhs_ij) * rhs_j; | 
 |       } | 
 |       res.coeffRef(j, k) += alpha * res_j; | 
 |  | 
 |       // handle diagonal coeff | 
 |       if (ProcessFirstHalf && i && (i.index() == j)) res.coeffRef(j, k) += alpha * i.value() * rhs.coeff(j, k); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <typename LhsView, typename Rhs, int ProductType> | 
 | struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> | 
 |     : generic_product_impl_base<LhsView, Rhs, | 
 |                                 generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> > { | 
 |   template <typename Dest> | 
 |   static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha) { | 
 |     typedef typename LhsView::MatrixTypeNested_ Lhs; | 
 |     typedef typename nested_eval<Lhs, Dynamic>::type LhsNested; | 
 |     typedef typename nested_eval<Rhs, Dynamic>::type RhsNested; | 
 |     LhsNested lhsNested(lhsView.matrix()); | 
 |     RhsNested rhsNested(rhs); | 
 |  | 
 |     internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Lhs, typename RhsView, int ProductType> | 
 | struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> | 
 |     : generic_product_impl_base<Lhs, RhsView, | 
 |                                 generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> > { | 
 |   template <typename Dest> | 
 |   static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha) { | 
 |     typedef typename RhsView::MatrixTypeNested_ Rhs; | 
 |     typedef typename nested_eval<Lhs, Dynamic>::type LhsNested; | 
 |     typedef typename nested_eval<Rhs, Dynamic>::type RhsNested; | 
 |     LhsNested lhsNested(lhs); | 
 |     RhsNested rhsNested(rhsView.matrix()); | 
 |  | 
 |     // transpose everything | 
 |     Transpose<Dest> dstT(dst); | 
 |     internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), | 
 |                                                                             lhsNested.transpose(), dstT, alpha); | 
 |   } | 
 | }; | 
 |  | 
 | // NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix | 
 | // TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore | 
 |  | 
 | template <typename LhsView, typename Rhs, int ProductTag> | 
 | struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape> | 
 |     : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject> { | 
 |   typedef Product<LhsView, Rhs, DefaultProduct> XprType; | 
 |   typedef typename XprType::PlainObject PlainObject; | 
 |   typedef evaluator<PlainObject> Base; | 
 |  | 
 |   product_evaluator(const XprType& xpr) : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols()) { | 
 |     internal::construct_at<Base>(this, m_result); | 
 |     generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, | 
 |                                                                                                        xpr.rhs()); | 
 |   } | 
 |  | 
 |  protected: | 
 |   typename Rhs::PlainObject m_lhs; | 
 |   PlainObject m_result; | 
 | }; | 
 |  | 
 | template <typename Lhs, typename RhsView, int ProductTag> | 
 | struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape> | 
 |     : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject> { | 
 |   typedef Product<Lhs, RhsView, DefaultProduct> XprType; | 
 |   typedef typename XprType::PlainObject PlainObject; | 
 |   typedef evaluator<PlainObject> Base; | 
 |  | 
 |   product_evaluator(const XprType& xpr) : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols()) { | 
 |     ::new (static_cast<Base*>(this)) Base(m_result); | 
 |     generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo( | 
 |         m_result, xpr.lhs(), m_rhs); | 
 |   } | 
 |  | 
 |  protected: | 
 |   typename Lhs::PlainObject m_rhs; | 
 |   PlainObject m_result; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | /*************************************************************************** | 
 |  * Implementation of symmetric copies and permutations | 
 |  ***************************************************************************/ | 
 | namespace internal { | 
 |  | 
 | template <int Mode, bool NonHermitian, typename MatrixType, int DestOrder> | 
 | void permute_symm_to_fullsymm( | 
 |     const MatrixType& mat, | 
 |     SparseMatrix<typename MatrixType::Scalar, DestOrder, typename MatrixType::StorageIndex>& _dest, | 
 |     const typename MatrixType::StorageIndex* perm) { | 
 |   typedef typename MatrixType::StorageIndex StorageIndex; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef SparseMatrix<Scalar, DestOrder, StorageIndex> Dest; | 
 |   typedef Matrix<StorageIndex, Dynamic, 1> VectorI; | 
 |   typedef evaluator<MatrixType> MatEval; | 
 |   typedef typename evaluator<MatrixType>::InnerIterator MatIterator; | 
 |  | 
 |   MatEval matEval(mat); | 
 |   Dest& dest(_dest.derived()); | 
 |   enum { StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor) }; | 
 |  | 
 |   Index size = mat.rows(); | 
 |   VectorI count; | 
 |   count.resize(size); | 
 |   count.setZero(); | 
 |   dest.resize(size, size); | 
 |   for (Index j = 0; j < size; ++j) { | 
 |     Index jp = perm ? perm[j] : j; | 
 |     for (MatIterator it(matEval, j); it; ++it) { | 
 |       Index i = it.index(); | 
 |       Index r = it.row(); | 
 |       Index c = it.col(); | 
 |       Index ip = perm ? perm[i] : i; | 
 |       if (Mode == int(Upper | Lower)) | 
 |         count[StorageOrderMatch ? jp : ip]++; | 
 |       else if (r == c) | 
 |         count[ip]++; | 
 |       else if ((Mode == Lower && r > c) || (Mode == Upper && r < c)) { | 
 |         count[ip]++; | 
 |         count[jp]++; | 
 |       } | 
 |     } | 
 |   } | 
 |   Index nnz = count.sum(); | 
 |  | 
 |   // reserve space | 
 |   dest.resizeNonZeros(nnz); | 
 |   dest.outerIndexPtr()[0] = 0; | 
 |   for (Index j = 0; j < size; ++j) dest.outerIndexPtr()[j + 1] = dest.outerIndexPtr()[j] + count[j]; | 
 |   for (Index j = 0; j < size; ++j) count[j] = dest.outerIndexPtr()[j]; | 
 |  | 
 |   // copy data | 
 |   for (StorageIndex j = 0; j < size; ++j) { | 
 |     for (MatIterator it(matEval, j); it; ++it) { | 
 |       StorageIndex i = internal::convert_index<StorageIndex>(it.index()); | 
 |       Index r = it.row(); | 
 |       Index c = it.col(); | 
 |  | 
 |       StorageIndex jp = perm ? perm[j] : j; | 
 |       StorageIndex ip = perm ? perm[i] : i; | 
 |  | 
 |       if (Mode == int(Upper | Lower)) { | 
 |         Index k = count[StorageOrderMatch ? jp : ip]++; | 
 |         dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp; | 
 |         dest.valuePtr()[k] = it.value(); | 
 |       } else if (r == c) { | 
 |         Index k = count[ip]++; | 
 |         dest.innerIndexPtr()[k] = ip; | 
 |         dest.valuePtr()[k] = it.value(); | 
 |       } else if (((Mode & Lower) == Lower && r > c) || ((Mode & Upper) == Upper && r < c)) { | 
 |         if (!StorageOrderMatch) std::swap(ip, jp); | 
 |         Index k = count[jp]++; | 
 |         dest.innerIndexPtr()[k] = ip; | 
 |         dest.valuePtr()[k] = it.value(); | 
 |         k = count[ip]++; | 
 |         dest.innerIndexPtr()[k] = jp; | 
 |         dest.valuePtr()[k] = (NonHermitian ? it.value() : numext::conj(it.value())); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <int SrcMode_, int DstMode_, bool NonHermitian, typename MatrixType, int DstOrder> | 
 | void permute_symm_to_symm(const MatrixType& mat, | 
 |                           SparseMatrix<typename MatrixType::Scalar, DstOrder, typename MatrixType::StorageIndex>& _dest, | 
 |                           const typename MatrixType::StorageIndex* perm) { | 
 |   typedef typename MatrixType::StorageIndex StorageIndex; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   SparseMatrix<Scalar, DstOrder, StorageIndex>& dest(_dest.derived()); | 
 |   typedef Matrix<StorageIndex, Dynamic, 1> VectorI; | 
 |   typedef evaluator<MatrixType> MatEval; | 
 |   typedef typename evaluator<MatrixType>::InnerIterator MatIterator; | 
 |  | 
 |   enum { | 
 |     SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor, | 
 |     StorageOrderMatch = int(SrcOrder) == int(DstOrder), | 
 |     DstMode = DstOrder == RowMajor ? (DstMode_ == Upper ? Lower : Upper) : DstMode_, | 
 |     SrcMode = SrcOrder == RowMajor ? (SrcMode_ == Upper ? Lower : Upper) : SrcMode_ | 
 |   }; | 
 |  | 
 |   MatEval matEval(mat); | 
 |  | 
 |   Index size = mat.rows(); | 
 |   VectorI count(size); | 
 |   count.setZero(); | 
 |   dest.resize(size, size); | 
 |   for (StorageIndex j = 0; j < size; ++j) { | 
 |     StorageIndex jp = perm ? perm[j] : j; | 
 |     for (MatIterator it(matEval, j); it; ++it) { | 
 |       StorageIndex i = it.index(); | 
 |       if ((int(SrcMode) == int(Lower) && i < j) || (int(SrcMode) == int(Upper) && i > j)) continue; | 
 |  | 
 |       StorageIndex ip = perm ? perm[i] : i; | 
 |       count[int(DstMode) == int(Lower) ? (std::min)(ip, jp) : (std::max)(ip, jp)]++; | 
 |     } | 
 |   } | 
 |   dest.outerIndexPtr()[0] = 0; | 
 |   for (Index j = 0; j < size; ++j) dest.outerIndexPtr()[j + 1] = dest.outerIndexPtr()[j] + count[j]; | 
 |   dest.resizeNonZeros(dest.outerIndexPtr()[size]); | 
 |   for (Index j = 0; j < size; ++j) count[j] = dest.outerIndexPtr()[j]; | 
 |  | 
 |   for (StorageIndex j = 0; j < size; ++j) { | 
 |     for (MatIterator it(matEval, j); it; ++it) { | 
 |       StorageIndex i = it.index(); | 
 |       if ((int(SrcMode) == int(Lower) && i < j) || (int(SrcMode) == int(Upper) && i > j)) continue; | 
 |  | 
 |       StorageIndex jp = perm ? perm[j] : j; | 
 |       StorageIndex ip = perm ? perm[i] : i; | 
 |  | 
 |       Index k = count[int(DstMode) == int(Lower) ? (std::min)(ip, jp) : (std::max)(ip, jp)]++; | 
 |       dest.innerIndexPtr()[k] = int(DstMode) == int(Lower) ? (std::max)(ip, jp) : (std::min)(ip, jp); | 
 |  | 
 |       if (!StorageOrderMatch) std::swap(ip, jp); | 
 |       if (((int(DstMode) == int(Lower) && ip < jp) || (int(DstMode) == int(Upper) && ip > jp))) | 
 |         dest.valuePtr()[k] = (NonHermitian ? it.value() : numext::conj(it.value())); | 
 |       else | 
 |         dest.valuePtr()[k] = it.value(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // TODO implement twists in a more evaluator friendly fashion | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename MatrixType, int Mode> | 
 | struct traits<SparseSymmetricPermutationProduct<MatrixType, Mode> > : traits<MatrixType> {}; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | template <typename MatrixType, int Mode> | 
 | class SparseSymmetricPermutationProduct : public EigenBase<SparseSymmetricPermutationProduct<MatrixType, Mode> > { | 
 |  public: | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::StorageIndex StorageIndex; | 
 |   enum { | 
 |     RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime, | 
 |     ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime | 
 |   }; | 
 |  | 
 |  protected: | 
 |   typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> Perm; | 
 |  | 
 |  public: | 
 |   typedef Matrix<StorageIndex, Dynamic, 1> VectorI; | 
 |   typedef typename MatrixType::Nested MatrixTypeNested; | 
 |   typedef internal::remove_all_t<MatrixTypeNested> NestedExpression; | 
 |  | 
 |   SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm) : m_matrix(mat), m_perm(perm) {} | 
 |  | 
 |   inline Index rows() const { return m_matrix.rows(); } | 
 |   inline Index cols() const { return m_matrix.cols(); } | 
 |  | 
 |   const NestedExpression& matrix() const { return m_matrix; } | 
 |   const Perm& perm() const { return m_perm; } | 
 |  | 
 |  protected: | 
 |   MatrixTypeNested m_matrix; | 
 |   const Perm& m_perm; | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename DstXprType, typename MatrixType, int Mode, typename Scalar> | 
 | struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType, Mode>, | 
 |                   internal::assign_op<Scalar, typename MatrixType::Scalar>, Sparse2Sparse> { | 
 |   typedef SparseSymmetricPermutationProduct<MatrixType, Mode> SrcXprType; | 
 |   typedef typename DstXprType::StorageIndex DstIndex; | 
 |   template <int Options> | 
 |   static void run(SparseMatrix<Scalar, Options, DstIndex>& dst, const SrcXprType& src, | 
 |                   const internal::assign_op<Scalar, typename MatrixType::Scalar>&) { | 
 |     // internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data()); | 
 |     SparseMatrix<Scalar, (Options & RowMajor) == RowMajor ? ColMajor : RowMajor, DstIndex> tmp; | 
 |     internal::permute_symm_to_fullsymm<Mode, false>(src.matrix(), tmp, src.perm().indices().data()); | 
 |     dst = tmp; | 
 |   } | 
 |  | 
 |   template <typename DestType, unsigned int DestMode> | 
 |   static void run(SparseSelfAdjointView<DestType, DestMode>& dst, const SrcXprType& src, | 
 |                   const internal::assign_op<Scalar, typename MatrixType::Scalar>&) { | 
 |     internal::permute_symm_to_symm<Mode, DestMode, false>(src.matrix(), dst.matrix(), src.perm().indices().data()); | 
 |   } | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_SPARSE_SELFADJOINTVIEW_H |