blob: ff2146afc4814955cf4a42ec081009ab36b51507 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPECIAL_FUNCTIONS_H
#define EIGEN_SPECIAL_FUNCTIONS_H
namespace Eigen {
namespace internal {
// Parts of this code are based on the Cephes Math Library.
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
//
// Permission has been kindly provided by the original author
// to incorporate the Cephes software into the Eigen codebase:
//
// From: Stephen Moshier
// To: Eugene Brevdo
// Subject: Re: Permission to wrap several cephes functions in Eigen
//
// Hello Eugene,
//
// Thank you for writing.
//
// If your licensing is similar to BSD, the formal way that has been
// handled is simply to add a statement to the effect that you are incorporating
// the Cephes software by permission of the author.
//
// Good luck with your project,
// Steve
namespace cephes {
/* polevl (modified for Eigen)
*
* Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* Scalar x, y, coef[N+1];
*
* y = polevl<decltype(x), N>( x, coef);
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evl() assumes that coef[N] = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevl().
*
*
* The Eigen implementation is templatized. For best speed, store
* coef as a const array (constexpr), e.g.
*
* const double coef[] = {1.0, 2.0, 3.0, ...};
*
*/
template <typename Scalar, int N>
struct polevl {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static Scalar run(const Scalar x, const Scalar coef[]) {
EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
return polevl<Scalar, N - 1>::run(x, coef) * x + coef[N];
}
};
template <typename Scalar>
struct polevl<Scalar, 0> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static Scalar run(const Scalar, const Scalar coef[]) {
return coef[0];
}
};
} // end namespace cephes
/****************************************************************************
* Implementation of lgamma *
****************************************************************************/
template <typename Scalar>
struct lgamma_impl {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
template <typename Scalar>
struct lgamma_retval {
typedef Scalar type;
};
#ifdef EIGEN_HAS_C99_MATH
template <>
struct lgamma_impl<float> {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE float run(float x) { return ::lgammaf(x); }
};
template <>
struct lgamma_impl<double> {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE double run(double x) { return ::lgamma(x); }
};
#endif
/****************************************************************************
* Implementation of digamma (psi) *
****************************************************************************/
template <typename Scalar>
struct digamma_retval {
typedef Scalar type;
};
#ifndef EIGEN_HAS_C99_MATH
template <typename Scalar>
struct digamma_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
#else
/*
*
* Polynomial evaluation helper for the Psi (digamma) function.
*
* digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for
* input Scalar s, assuming s is above 10.0.
*
* If s is above a certain threshold for the given Scalar type, zero
* is returned. Otherwise the polynomial is evaluated with enough
* coefficients for results matching Scalar machine precision.
*
*
*/
template <typename Scalar>
struct digamma_impl_maybe_poly {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
template <>
struct digamma_impl_maybe_poly<float> {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE float run(const float s) {
const float A[] = {
-4.16666666666666666667E-3f,
3.96825396825396825397E-3f,
-8.33333333333333333333E-3f,
8.33333333333333333333E-2f
};
float z;
if (s < 1.0e8f) {
z = 1.0f / (s * s);
return z * cephes::polevl<float, 3>::run(z, A);
} else return 0.0f;
}
};
template <>
struct digamma_impl_maybe_poly<double> {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE double run(const double s) {
const double A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,
-4.16666666666666666667E-3,
3.96825396825396825397E-3,
-8.33333333333333333333E-3,
8.33333333333333333333E-2
};
double z;
if (s < 1.0e17) {
z = 1.0 / (s * s);
return z * cephes::polevl<double, 6>::run(z, A);
}
else return 0.0;
}
};
template <typename Scalar>
struct digamma_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar x) {
/*
*
* Psi (digamma) function (modified for Eigen)
*
*
* SYNOPSIS:
*
* double x, y, psi();
*
* y = psi( x );
*
*
* DESCRIPTION:
*
* d -
* psi(x) = -- ln | (x)
* dx
*
* is the logarithmic derivative of the gamma function.
* For integer x,
* n-1
* -
* psi(n) = -EUL + > 1/k.
* -
* k=1
*
* If x is negative, it is transformed to a positive argument by the
* reflection formula psi(1-x) = psi(x) + pi cot(pi x).
* For general positive x, the argument is made greater than 10
* using the recurrence psi(x+1) = psi(x) + 1/x.
* Then the following asymptotic expansion is applied:
*
* inf. B
* - 2k
* psi(x) = log(x) - 1/2x - > -------
* - 2k
* k=1 2k x
*
* where the B2k are Bernoulli numbers.
*
* ACCURACY (float):
* Relative error (except absolute when |psi| < 1):
* arithmetic domain # trials peak rms
* IEEE 0,30 30000 1.3e-15 1.4e-16
* IEEE -30,0 40000 1.5e-15 2.2e-16
*
* ACCURACY (double):
* Absolute error, relative when |psi| > 1 :
* arithmetic domain # trials peak rms
* IEEE -33,0 30000 8.2e-7 1.2e-7
* IEEE 0,33 100000 7.3e-7 7.7e-8
*
* ERROR MESSAGES:
* message condition value returned
* psi singularity x integer <=0 INFINITY
*/
Scalar p, q, nz, s, w, y;
bool negative;
const Scalar maxnum = NumTraits<Scalar>::infinity();
const Scalar m_pi = 3.14159265358979323846;
negative = 0;
nz = 0.0;
const Scalar zero = 0.0;
const Scalar one = 1.0;
const Scalar half = 0.5;
if (x <= zero) {
negative = one;
q = x;
p = ::floor(q);
if (p == q) {
return maxnum;
}
/* Remove the zeros of tan(m_pi x)
* by subtracting the nearest integer from x
*/
nz = q - p;
if (nz != half) {
if (nz > half) {
p += one;
nz = q - p;
}
nz = m_pi / ::tan(m_pi * nz);
}
else {
nz = zero;
}
x = one - x;
}
/* use the recurrence psi(x+1) = psi(x) + 1/x. */
s = x;
w = zero;
while (s < Scalar(10)) {
w += one / s;
s += one;
}
y = digamma_impl_maybe_poly<Scalar>::run(s);
y = ::log(s) - (half / s) - y - w;
return (negative) ? y - nz : y;
}
};
#endif // EIGEN_HAS_C99_MATH
/****************************************************************************
* Implementation of erf *
****************************************************************************/
template <typename Scalar>
struct erf_impl {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
template <typename Scalar>
struct erf_retval {
typedef Scalar type;
};
#ifdef EIGEN_HAS_C99_MATH
template <>
struct erf_impl<float> {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE float run(float x) { return ::erff(x); }
};
template <>
struct erf_impl<double> {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE double run(double x) { return ::erf(x); }
};
#endif // EIGEN_HAS_C99_MATH
/***************************************************************************
* Implementation of erfc *
****************************************************************************/
template <typename Scalar>
struct erfc_impl {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
template <typename Scalar>
struct erfc_retval {
typedef Scalar type;
};
#ifdef EIGEN_HAS_C99_MATH
template <>
struct erfc_impl<float> {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE float run(const float x) { return ::erfcf(x); }
};
template <>
struct erfc_impl<double> {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE double run(const double x) { return ::erfc(x); }
};
#endif // EIGEN_HAS_C99_MATH
/****************************************************************************
* Implementation of igammac (complemented incomplete gamma integral) *
****************************************************************************/
template <typename Scalar>
struct igammac_retval {
typedef Scalar type;
};
#ifndef EIGEN_HAS_C99_MATH
template <typename Scalar>
struct igammac_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar a, Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
#else
template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
template <typename Scalar>
struct igammac_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar a, Scalar x) {
/* igamc()
*
* Incomplete gamma integral (modified for Eigen)
*
*
*
* SYNOPSIS:
*
* double a, x, y, igamc();
*
* y = igamc( a, x );
*
* DESCRIPTION:
*
* The function is defined by
*
*
* igamc(a,x) = 1 - igam(a,x)
*
* inf.
* -
* 1 | | -t a-1
* = ----- | e t dt.
* - | |
* | (a) -
* x
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
* ACCURACY (float):
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,30 30000 7.8e-6 5.9e-7
*
*
* ACCURACY (double):
*
* Tested at random a, x.
* a x Relative error:
* arithmetic domain domain # trials peak rms
* IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
* IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
*
*/
/*
Cephes Math Library Release 2.2: June, 1992
Copyright 1985, 1987, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
const Scalar zero = 0;
const Scalar one = 1;
const Scalar two = 2;
const Scalar machep = NumTraits<Scalar>::epsilon();
const Scalar maxlog = ::log(NumTraits<Scalar>::highest());
const Scalar big = one / machep;
Scalar ans, ax, c, yc, r, t, y, z;
Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
if ((x <= zero) || ( a <= zero)) {
return one;
}
if ((x < one) || (x < a)) {
return (one - igamma_impl<Scalar>::run(a, x));
}
ax = a * ::log(x) - x - lgamma_impl<Scalar>::run(a);
if( ax < -maxlog ) { // underflow
return zero;
}
ax = ::exp(ax);
// continued fraction
y = one - a;
z = x + y + one;
c = zero;
pkm2 = one;
qkm2 = x;
pkm1 = x + one;
qkm1 = z * x;
ans = pkm1/qkm1;
do {
c += one;
y += one;
z += two;
yc = y * c;
pk = pkm1 * z - pkm2 * yc;
qk = qkm1 * z - qkm2 * yc;
if( qk != zero ) {
r = pk/qk;
t = ::abs( (ans - r)/r );
ans = r;
} else {
t = one;
}
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if (::abs(pk) > big) {
pkm2 *= machep;
pkm1 *= machep;
qkm2 *= machep;
qkm1 *= machep;
}
} while( t > machep );
return ( ans * ax );
}
};
#endif // EIGEN_HAS_C99_MATH
/****************************************************************************
* Implementation of igamma (incomplete gamma integral) *
****************************************************************************/
template <typename Scalar>
struct igamma_retval {
typedef Scalar type;
};
#ifndef EIGEN_HAS_C99_MATH
template <typename Scalar>
struct igamma_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar a, Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
#else
template <typename Scalar>
struct igamma_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar a, Scalar x) {
/* igam()
* Incomplete gamma integral
*
*
*
* SYNOPSIS:
*
* double a, x, y, igam();
*
* y = igam( a, x );
*
* DESCRIPTION:
*
* The function is defined by
*
* x
* -
* 1 | | -t a-1
* igam(a,x) = ----- | e t dt.
* - | |
* | (a) -
* 0
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
* ACCURACY (double):
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,30 200000 3.6e-14 2.9e-15
* IEEE 0,100 300000 9.9e-14 1.5e-14
*
*
* ACCURACY (float):
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,30 20000 7.8e-6 5.9e-7
*
*/
/*
Cephes Math Library Release 2.2: June, 1992
Copyright 1985, 1987, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/* left tail of incomplete gamma function:
*
* inf. k
* a -x - x
* x e > ----------
* - -
* k=0 | (a+k+1)
*
*/
const Scalar zero = 0;
const Scalar one = 1;
const Scalar machep = NumTraits<Scalar>::epsilon();
const Scalar maxlog = ::log(NumTraits<Scalar>::highest());
double ans, ax, c, r;
if( (x <= zero) || ( a <= zero) ) {
return zero;
}
if( (x > one) && (x > a ) ) {
return (one - igammac_impl<Scalar>::run(a,x));
}
/* Compute x**a * exp(-x) / gamma(a) */
ax = a * ::log(x) - x - lgamma_impl<Scalar>::run(a);
if( ax < -maxlog ) {
// underflow
return zero;
}
ax = ::exp(ax);
/* power series */
r = a;
c = one;
ans = one;
do {
r += one;
c *= x/r;
ans += c;
} while( c/ans > machep );
return( ans * ax/a );
}
};
#endif // EIGEN_HAS_C99_MATH
} // end namespace internal
namespace numext {
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar)
lgamma(const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
}
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
digamma(const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
}
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
erf(const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
}
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
erfc(const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
}
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
igamma(const Scalar& a, const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
}
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
igammac(const Scalar& a, const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
}
} // end namespace numext
} // end namespace Eigen
#endif // EIGEN_SPECIAL_FUNCTIONS_H