| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_STABLENORM_H |
| #define EIGEN_STABLENORM_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<typename ExpressionType, typename Scalar> |
| inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale) |
| { |
| Scalar maxCoeff = bl.cwiseAbs().maxCoeff(); |
| |
| if(maxCoeff>scale) |
| { |
| ssq = ssq * numext::abs2(scale/maxCoeff); |
| Scalar tmp = Scalar(1)/maxCoeff; |
| if(tmp > NumTraits<Scalar>::highest()) |
| { |
| invScale = NumTraits<Scalar>::highest(); |
| scale = Scalar(1)/invScale; |
| } |
| else if(maxCoeff>NumTraits<Scalar>::highest()) // we got a INF |
| { |
| invScale = Scalar(1); |
| scale = maxCoeff; |
| } |
| else |
| { |
| scale = maxCoeff; |
| invScale = tmp; |
| } |
| } |
| else if(maxCoeff!=maxCoeff) // we got a NaN |
| { |
| scale = maxCoeff; |
| } |
| |
| // TODO if the maxCoeff is much much smaller than the current scale, |
| // then we can neglect this sub vector |
| if(scale>Scalar(0)) // if scale==0, then bl is 0 |
| ssq += (bl*invScale).squaredNorm(); |
| } |
| |
| template<typename Derived> |
| inline typename NumTraits<typename traits<Derived>::Scalar>::Real |
| blueNorm_impl(const EigenBase<Derived>& _vec) |
| { |
| typedef typename Derived::RealScalar RealScalar; |
| using std::pow; |
| using std::sqrt; |
| using std::abs; |
| const Derived& vec(_vec.derived()); |
| static bool initialized = false; |
| static RealScalar b1, b2, s1m, s2m, rbig, relerr; |
| if(!initialized) |
| { |
| int ibeta, it, iemin, iemax, iexp; |
| RealScalar eps; |
| // This program calculates the machine-dependent constants |
| // bl, b2, slm, s2m, relerr overfl |
| // from the "basic" machine-dependent numbers |
| // nbig, ibeta, it, iemin, iemax, rbig. |
| // The following define the basic machine-dependent constants. |
| // For portability, the PORT subprograms "ilmaeh" and "rlmach" |
| // are used. For any specific computer, each of the assignment |
| // statements can be replaced |
| ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers |
| it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa |
| iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent |
| iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent |
| rbig = (std::numeric_limits<RealScalar>::max)(); // largest floating-point number |
| |
| iexp = -((1-iemin)/2); |
| b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange |
| iexp = (iemax + 1 - it)/2; |
| b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange |
| |
| iexp = (2-iemin)/2; |
| s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range |
| iexp = - ((iemax+it)/2); |
| s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range |
| |
| eps = RealScalar(pow(double(ibeta), 1-it)); |
| relerr = sqrt(eps); // tolerance for neglecting asml |
| initialized = true; |
| } |
| Index n = vec.size(); |
| RealScalar ab2 = b2 / RealScalar(n); |
| RealScalar asml = RealScalar(0); |
| RealScalar amed = RealScalar(0); |
| RealScalar abig = RealScalar(0); |
| for(typename Derived::InnerIterator it(vec, 0); it; ++it) |
| { |
| RealScalar ax = abs(it.value()); |
| if(ax > ab2) abig += numext::abs2(ax*s2m); |
| else if(ax < b1) asml += numext::abs2(ax*s1m); |
| else amed += numext::abs2(ax); |
| } |
| if(amed!=amed) |
| return amed; // we got a NaN |
| if(abig > RealScalar(0)) |
| { |
| abig = sqrt(abig); |
| if(abig > rbig) // overflow, or *this contains INF values |
| return abig; // return INF |
| if(amed > RealScalar(0)) |
| { |
| abig = abig/s2m; |
| amed = sqrt(amed); |
| } |
| else |
| return abig/s2m; |
| } |
| else if(asml > RealScalar(0)) |
| { |
| if (amed > RealScalar(0)) |
| { |
| abig = sqrt(amed); |
| amed = sqrt(asml) / s1m; |
| } |
| else |
| return sqrt(asml)/s1m; |
| } |
| else |
| return sqrt(amed); |
| asml = numext::mini(abig, amed); |
| abig = numext::maxi(abig, amed); |
| if(asml <= abig*relerr) |
| return abig; |
| else |
| return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig)); |
| } |
| |
| } // end namespace internal |
| |
| /** \returns the \em l2 norm of \c *this avoiding underflow and overflow. |
| * This version use a blockwise two passes algorithm: |
| * 1 - find the absolute largest coefficient \c s |
| * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way |
| * |
| * For architecture/scalar types supporting vectorization, this version |
| * is faster than blueNorm(). Otherwise the blueNorm() is much faster. |
| * |
| * \sa norm(), blueNorm(), hypotNorm() |
| */ |
| template<typename Derived> |
| inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real |
| MatrixBase<Derived>::stableNorm() const |
| { |
| using std::sqrt; |
| using std::abs; |
| const Index blockSize = 4096; |
| RealScalar scale(0); |
| RealScalar invScale(1); |
| RealScalar ssq(0); // sum of square |
| |
| typedef typename internal::nested_eval<Derived,2>::type DerivedCopy; |
| typedef typename internal::remove_all<DerivedCopy>::type DerivedCopyClean; |
| DerivedCopy copy(derived()); |
| |
| enum { |
| CanAlign = (int(Flags)&DirectAccessBit) || (int(internal::evaluator<DerivedCopyClean>::Alignment)>0) // FIXME |
| }; |
| typedef typename internal::conditional<CanAlign, Ref<const Matrix<Scalar,Dynamic,1,0,blockSize,1>, internal::evaluator<DerivedCopyClean>::Alignment>, |
| typename DerivedCopyClean |
| ::ConstSegmentReturnType>::type SegmentWrapper; |
| Index n = size(); |
| |
| if(n==1) |
| return abs(this->coeff(0)); |
| |
| Index bi = internal::first_default_aligned(copy); |
| if (bi>0) |
| internal::stable_norm_kernel(copy.head(bi), ssq, scale, invScale); |
| for (; bi<n; bi+=blockSize) |
| internal::stable_norm_kernel(SegmentWrapper(copy.segment(bi,numext::mini(blockSize, n - bi))), ssq, scale, invScale); |
| return scale * sqrt(ssq); |
| } |
| |
| /** \returns the \em l2 norm of \c *this using the Blue's algorithm. |
| * A Portable Fortran Program to Find the Euclidean Norm of a Vector, |
| * ACM TOMS, Vol 4, Issue 1, 1978. |
| * |
| * For architecture/scalar types without vectorization, this version |
| * is much faster than stableNorm(). Otherwise the stableNorm() is faster. |
| * |
| * \sa norm(), stableNorm(), hypotNorm() |
| */ |
| template<typename Derived> |
| inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real |
| MatrixBase<Derived>::blueNorm() const |
| { |
| return internal::blueNorm_impl(*this); |
| } |
| |
| /** \returns the \em l2 norm of \c *this avoiding undeflow and overflow. |
| * This version use a concatenation of hypot() calls, and it is very slow. |
| * |
| * \sa norm(), stableNorm() |
| */ |
| template<typename Derived> |
| inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real |
| MatrixBase<Derived>::hypotNorm() const |
| { |
| return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_STABLENORM_H |