| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_GENERIC_PACKET_MATH_H | 
 | #define EIGEN_GENERIC_PACKET_MATH_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** \internal | 
 |  * \file GenericPacketMath.h | 
 |  * | 
 |  * Default implementation for types not supported by the vectorization. | 
 |  * In practice these functions are provided to make easier the writing | 
 |  * of generic vectorized code. | 
 |  */ | 
 |  | 
 | #ifndef EIGEN_DEBUG_ALIGNED_LOAD | 
 | #define EIGEN_DEBUG_ALIGNED_LOAD | 
 | #endif | 
 |  | 
 | #ifndef EIGEN_DEBUG_UNALIGNED_LOAD | 
 | #define EIGEN_DEBUG_UNALIGNED_LOAD | 
 | #endif | 
 |  | 
 | #ifndef EIGEN_DEBUG_ALIGNED_STORE | 
 | #define EIGEN_DEBUG_ALIGNED_STORE | 
 | #endif | 
 |  | 
 | #ifndef EIGEN_DEBUG_UNALIGNED_STORE | 
 | #define EIGEN_DEBUG_UNALIGNED_STORE | 
 | #endif | 
 |  | 
 | struct default_packet_traits { | 
 |   enum { | 
 |     // Ops that are implemented for most types. | 
 |     HasAdd = 1, | 
 |     HasSub = 1, | 
 |     HasShift = 1, | 
 |     HasMul = 1, | 
 |     HasNegate = 1, | 
 |     HasAbs = 1, | 
 |     HasAbs2 = 1, | 
 |     HasMin = 1, | 
 |     HasMax = 1, | 
 |     HasConj = 1, | 
 |     HasSetLinear = 1, | 
 |     HasSign = 1, | 
 |     // By default, the nearest integer functions (rint, round, floor, ceil, trunc) are enabled for all scalar and packet | 
 |     // types | 
 |     HasRound = 1, | 
 |  | 
 |     HasArg = 0, | 
 |     HasAbsDiff = 0, | 
 |     HasBlend = 0, | 
 |     // This flag is used to indicate whether packet comparison is supported. | 
 |     // pcmp_eq, pcmp_lt and pcmp_le should be defined for it to be true. | 
 |     HasCmp = 0, | 
 |  | 
 |     HasDiv = 0, | 
 |     HasReciprocal = 0, | 
 |     HasSqrt = 0, | 
 |     HasRsqrt = 0, | 
 |     HasExp = 0, | 
 |     HasExpm1 = 0, | 
 |     HasLog = 0, | 
 |     HasLog1p = 0, | 
 |     HasLog10 = 0, | 
 |     HasPow = 0, | 
 |     HasSin = 0, | 
 |     HasCos = 0, | 
 |     HasTan = 0, | 
 |     HasASin = 0, | 
 |     HasACos = 0, | 
 |     HasATan = 0, | 
 |     HasATanh = 0, | 
 |     HasSinh = 0, | 
 |     HasCosh = 0, | 
 |     HasTanh = 0, | 
 |     HasLGamma = 0, | 
 |     HasDiGamma = 0, | 
 |     HasZeta = 0, | 
 |     HasPolygamma = 0, | 
 |     HasErf = 0, | 
 |     HasErfc = 0, | 
 |     HasNdtri = 0, | 
 |     HasBessel = 0, | 
 |     HasIGamma = 0, | 
 |     HasIGammaDerA = 0, | 
 |     HasGammaSampleDerAlpha = 0, | 
 |     HasIGammac = 0, | 
 |     HasBetaInc = 0 | 
 |   }; | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct packet_traits : default_packet_traits { | 
 |   typedef T type; | 
 |   typedef T half; | 
 |   enum { | 
 |     Vectorizable = 0, | 
 |     size = 1, | 
 |     AlignedOnScalar = 0, | 
 |   }; | 
 |   enum { | 
 |     HasAdd = 0, | 
 |     HasSub = 0, | 
 |     HasMul = 0, | 
 |     HasNegate = 0, | 
 |     HasAbs = 0, | 
 |     HasAbs2 = 0, | 
 |     HasMin = 0, | 
 |     HasMax = 0, | 
 |     HasConj = 0, | 
 |     HasSetLinear = 0 | 
 |   }; | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct packet_traits<const T> : packet_traits<T> {}; | 
 |  | 
 | template <typename T> | 
 | struct unpacket_traits { | 
 |   typedef T type; | 
 |   typedef T half; | 
 |   typedef typename numext::get_integer_by_size<sizeof(T)>::signed_type integer_packet; | 
 |   enum { | 
 |     size = 1, | 
 |     alignment = alignof(T), | 
 |     vectorizable = false, | 
 |     masked_load_available = false, | 
 |     masked_store_available = false | 
 |   }; | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct unpacket_traits<const T> : unpacket_traits<T> {}; | 
 |  | 
 | /** \internal A convenience utility for determining if the type is a scalar. | 
 |  * This is used to enable some generic packet implementations. | 
 |  */ | 
 | template <typename Packet> | 
 | struct is_scalar { | 
 |   using Scalar = typename unpacket_traits<Packet>::type; | 
 |   enum { value = internal::is_same<Packet, Scalar>::value }; | 
 | }; | 
 |  | 
 | // automatically and succinctly define combinations of pcast<SrcPacket,TgtPacket> when | 
 | // 1) the packets are the same type, or | 
 | // 2) the packets differ only in sign. | 
 | // In both of these cases, preinterpret (bit_cast) is equivalent to pcast (static_cast) | 
 | template <typename SrcPacket, typename TgtPacket, | 
 |           bool Scalar = is_scalar<SrcPacket>::value && is_scalar<TgtPacket>::value> | 
 | struct is_degenerate_helper : is_same<SrcPacket, TgtPacket> {}; | 
 | template <> | 
 | struct is_degenerate_helper<int8_t, uint8_t, true> : std::true_type {}; | 
 | template <> | 
 | struct is_degenerate_helper<int16_t, uint16_t, true> : std::true_type {}; | 
 | template <> | 
 | struct is_degenerate_helper<int32_t, uint32_t, true> : std::true_type {}; | 
 | template <> | 
 | struct is_degenerate_helper<int64_t, uint64_t, true> : std::true_type {}; | 
 |  | 
 | template <typename SrcPacket, typename TgtPacket> | 
 | struct is_degenerate_helper<SrcPacket, TgtPacket, false> { | 
 |   using SrcScalar = typename unpacket_traits<SrcPacket>::type; | 
 |   static constexpr int SrcSize = unpacket_traits<SrcPacket>::size; | 
 |   using TgtScalar = typename unpacket_traits<TgtPacket>::type; | 
 |   static constexpr int TgtSize = unpacket_traits<TgtPacket>::size; | 
 |   static constexpr bool value = is_degenerate_helper<SrcScalar, TgtScalar, true>::value && (SrcSize == TgtSize); | 
 | }; | 
 |  | 
 | // is_degenerate<T1,T2>::value == is_degenerate<T2,T1>::value | 
 | template <typename SrcPacket, typename TgtPacket> | 
 | struct is_degenerate { | 
 |   static constexpr bool value = | 
 |       is_degenerate_helper<SrcPacket, TgtPacket>::value || is_degenerate_helper<TgtPacket, SrcPacket>::value; | 
 | }; | 
 |  | 
 | template <typename Packet> | 
 | struct is_half { | 
 |   using Scalar = typename unpacket_traits<Packet>::type; | 
 |   static constexpr int Size = unpacket_traits<Packet>::size; | 
 |   using DefaultPacket = typename packet_traits<Scalar>::type; | 
 |   static constexpr int DefaultSize = unpacket_traits<DefaultPacket>::size; | 
 |   static constexpr bool value = Size < DefaultSize; | 
 | }; | 
 |  | 
 | template <typename Src, typename Tgt> | 
 | struct type_casting_traits { | 
 |   enum { | 
 |     VectorizedCast = | 
 |         is_degenerate<Src, Tgt>::value && packet_traits<Src>::Vectorizable && packet_traits<Tgt>::Vectorizable, | 
 |     SrcCoeffRatio = 1, | 
 |     TgtCoeffRatio = 1 | 
 |   }; | 
 | }; | 
 |  | 
 | // provides a succinct template to define vectorized casting traits with respect to the largest accessible packet types | 
 | template <typename Src, typename Tgt> | 
 | struct vectorized_type_casting_traits { | 
 |   enum : int { | 
 |     DefaultSrcPacketSize = packet_traits<Src>::size, | 
 |     DefaultTgtPacketSize = packet_traits<Tgt>::size, | 
 |     VectorizedCast = 1, | 
 |     SrcCoeffRatio = plain_enum_max(DefaultTgtPacketSize / DefaultSrcPacketSize, 1), | 
 |     TgtCoeffRatio = plain_enum_max(DefaultSrcPacketSize / DefaultTgtPacketSize, 1) | 
 |   }; | 
 | }; | 
 |  | 
 | /** \internal Wrapper to ensure that multiple packet types can map to the same | 
 |     same underlying vector type. */ | 
 | template <typename T, int unique_id = 0> | 
 | struct eigen_packet_wrapper { | 
 |   EIGEN_ALWAYS_INLINE operator T&() { return m_val; } | 
 |   EIGEN_ALWAYS_INLINE operator const T&() const { return m_val; } | 
 |   EIGEN_ALWAYS_INLINE eigen_packet_wrapper() = default; | 
 |   EIGEN_ALWAYS_INLINE eigen_packet_wrapper(const T& v) : m_val(v) {} | 
 |   EIGEN_ALWAYS_INLINE eigen_packet_wrapper& operator=(const T& v) { | 
 |     m_val = v; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   T m_val; | 
 | }; | 
 |  | 
 | template <typename Target, typename Packet, bool IsSame = is_same<Target, Packet>::value> | 
 | struct preinterpret_generic; | 
 |  | 
 | template <typename Target, typename Packet> | 
 | struct preinterpret_generic<Target, Packet, false> { | 
 |   // the packets are not the same, attempt scalar bit_cast | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Target run(const Packet& a) { | 
 |     return numext::bit_cast<Target, Packet>(a); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Packet> | 
 | struct preinterpret_generic<Packet, Packet, true> { | 
 |   // the packets are the same type: do nothing | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& a) { return a; } | 
 | }; | 
 |  | 
 | /** \internal \returns reinterpret_cast<Target>(a) */ | 
 | template <typename Target, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Target preinterpret(const Packet& a) { | 
 |   return preinterpret_generic<Target, Packet>::run(a); | 
 | } | 
 |  | 
 | template <typename SrcPacket, typename TgtPacket, bool Degenerate = is_degenerate<SrcPacket, TgtPacket>::value, | 
 |           bool TgtIsHalf = is_half<TgtPacket>::value> | 
 | struct pcast_generic; | 
 |  | 
 | template <typename SrcPacket, typename TgtPacket> | 
 | struct pcast_generic<SrcPacket, TgtPacket, false, false> { | 
 |   // the packets are not degenerate: attempt scalar static_cast | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) { | 
 |     return cast_impl<SrcPacket, TgtPacket>::run(a); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Packet> | 
 | struct pcast_generic<Packet, Packet, true, false> { | 
 |   // the packets are the same: do nothing | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& a) { return a; } | 
 | }; | 
 |  | 
 | template <typename SrcPacket, typename TgtPacket, bool TgtIsHalf> | 
 | struct pcast_generic<SrcPacket, TgtPacket, true, TgtIsHalf> { | 
 |   // the packets are degenerate: preinterpret is equivalent to pcast | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) { return preinterpret<TgtPacket>(a); } | 
 | }; | 
 |  | 
 | /** \internal \returns static_cast<TgtType>(a) (coeff-wise) */ | 
 | template <typename SrcPacket, typename TgtPacket> | 
 | EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a) { | 
 |   return pcast_generic<SrcPacket, TgtPacket>::run(a); | 
 | } | 
 | template <typename SrcPacket, typename TgtPacket> | 
 | EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b) { | 
 |   return pcast_generic<SrcPacket, TgtPacket>::run(a, b); | 
 | } | 
 | template <typename SrcPacket, typename TgtPacket> | 
 | EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b, const SrcPacket& c, | 
 |                                          const SrcPacket& d) { | 
 |   return pcast_generic<SrcPacket, TgtPacket>::run(a, b, c, d); | 
 | } | 
 | template <typename SrcPacket, typename TgtPacket> | 
 | EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b, const SrcPacket& c, const SrcPacket& d, | 
 |                                          const SrcPacket& e, const SrcPacket& f, const SrcPacket& g, | 
 |                                          const SrcPacket& h) { | 
 |   return pcast_generic<SrcPacket, TgtPacket>::run(a, b, c, d, e, f, g, h); | 
 | } | 
 |  | 
 | template <typename SrcPacket, typename TgtPacket> | 
 | struct pcast_generic<SrcPacket, TgtPacket, false, true> { | 
 |   // TgtPacket is a half packet of some other type | 
 |   // perform cast and truncate result | 
 |   using DefaultTgtPacket = typename is_half<TgtPacket>::DefaultPacket; | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) { | 
 |     return preinterpret<TgtPacket>(pcast<SrcPacket, DefaultTgtPacket>(a)); | 
 |   } | 
 | }; | 
 |  | 
 | /** \internal \returns a + b (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet padd(const Packet& a, const Packet& b) { | 
 |   return a + b; | 
 | } | 
 | // Avoid compiler warning for boolean algebra. | 
 | template <> | 
 | EIGEN_DEVICE_FUNC inline bool padd(const bool& a, const bool& b) { | 
 |   return a || b; | 
 | } | 
 |  | 
 | /** \internal \returns a packet version of \a *from, (un-aligned masked add) | 
 |  * There is no generic implementation. We only have implementations for specialized | 
 |  * cases. Generic case should not be called. | 
 |  */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline std::enable_if_t<unpacket_traits<Packet>::masked_fpops_available, Packet> padd( | 
 |     const Packet& a, const Packet& b, typename unpacket_traits<Packet>::mask_t umask); | 
 |  | 
 | /** \internal \returns a - b (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet psub(const Packet& a, const Packet& b) { | 
 |   return a - b; | 
 | } | 
 |  | 
 | /** \internal \returns -a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pnegate(const Packet& a) { | 
 |   EIGEN_STATIC_ASSERT((!is_same<typename unpacket_traits<Packet>::type, bool>::value), | 
 |                       NEGATE IS NOT DEFINED FOR BOOLEAN TYPES) | 
 |   return numext::negate(a); | 
 | } | 
 |  | 
 | /** \internal \returns conj(a) (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pconj(const Packet& a) { | 
 |   return numext::conj(a); | 
 | } | 
 |  | 
 | /** \internal \returns a * b (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pmul(const Packet& a, const Packet& b) { | 
 |   return a * b; | 
 | } | 
 | // Avoid compiler warning for boolean algebra. | 
 | template <> | 
 | EIGEN_DEVICE_FUNC inline bool pmul(const bool& a, const bool& b) { | 
 |   return a && b; | 
 | } | 
 |  | 
 | /** \internal \returns a / b (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pdiv(const Packet& a, const Packet& b) { | 
 |   return a / b; | 
 | } | 
 |  | 
 | // In the generic case, memset to all one bits. | 
 | template <typename Packet, typename EnableIf = void> | 
 | struct ptrue_impl { | 
 |   static EIGEN_DEVICE_FUNC inline Packet run(const Packet& /*a*/) { | 
 |     Packet b; | 
 |     memset(static_cast<void*>(&b), 0xff, sizeof(Packet)); | 
 |     return b; | 
 |   } | 
 | }; | 
 |  | 
 | // For booleans, we can only directly set a valid `bool` value to avoid UB. | 
 | template <> | 
 | struct ptrue_impl<bool, void> { | 
 |   static EIGEN_DEVICE_FUNC inline bool run(const bool& /*a*/) { return true; } | 
 | }; | 
 |  | 
 | // For non-trivial scalars, set to Scalar(1) (i.e. a non-zero value). | 
 | // Although this is technically not a valid bitmask, the scalar path for pselect | 
 | // uses a comparison to zero, so this should still work in most cases. We don't | 
 | // have another option, since the scalar type requires initialization. | 
 | template <typename T> | 
 | struct ptrue_impl<T, std::enable_if_t<is_scalar<T>::value && NumTraits<T>::RequireInitialization>> { | 
 |   static EIGEN_DEVICE_FUNC inline T run(const T& /*a*/) { return T(1); } | 
 | }; | 
 |  | 
 | /** \internal \returns one bits. */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet ptrue(const Packet& a) { | 
 |   return ptrue_impl<Packet>::run(a); | 
 | } | 
 |  | 
 | // In the general case, memset to zero. | 
 | template <typename Packet, typename EnableIf = void> | 
 | struct pzero_impl { | 
 |   static EIGEN_DEVICE_FUNC inline Packet run(const Packet& /*a*/) { | 
 |     Packet b; | 
 |     memset(static_cast<void*>(&b), 0x00, sizeof(Packet)); | 
 |     return b; | 
 |   } | 
 | }; | 
 |  | 
 | // For scalars, explicitly set to Scalar(0), since the underlying representation | 
 | // for zero may not consist of all-zero bits. | 
 | template <typename T> | 
 | struct pzero_impl<T, std::enable_if_t<is_scalar<T>::value>> { | 
 |   static EIGEN_DEVICE_FUNC inline T run(const T& /*a*/) { return T(0); } | 
 | }; | 
 |  | 
 | /** \internal \returns packet of zeros */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pzero(const Packet& a) { | 
 |   return pzero_impl<Packet>::run(a); | 
 | } | 
 |  | 
 | /** \internal \returns a <= b as a bit mask */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pcmp_le(const Packet& a, const Packet& b) { | 
 |   return a <= b ? ptrue(a) : pzero(a); | 
 | } | 
 |  | 
 | /** \internal \returns a < b as a bit mask */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pcmp_lt(const Packet& a, const Packet& b) { | 
 |   return a < b ? ptrue(a) : pzero(a); | 
 | } | 
 |  | 
 | /** \internal \returns a == b as a bit mask */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pcmp_eq(const Packet& a, const Packet& b) { | 
 |   return a == b ? ptrue(a) : pzero(a); | 
 | } | 
 |  | 
 | /** \internal \returns a < b or a==NaN or b==NaN as a bit mask */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pcmp_lt_or_nan(const Packet& a, const Packet& b) { | 
 |   return a >= b ? pzero(a) : ptrue(a); | 
 | } | 
 |  | 
 | template <typename T> | 
 | struct bit_and { | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a & b; } | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct bit_or { | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a | b; } | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct bit_xor { | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a ^ b; } | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct bit_not { | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a) const { return ~a; } | 
 | }; | 
 |  | 
 | template <> | 
 | struct bit_and<bool> { | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a, const bool& b) const { | 
 |     return a && b; | 
 |   } | 
 | }; | 
 |  | 
 | template <> | 
 | struct bit_or<bool> { | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a, const bool& b) const { | 
 |     return a || b; | 
 |   } | 
 | }; | 
 |  | 
 | template <> | 
 | struct bit_xor<bool> { | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a, const bool& b) const { | 
 |     return a != b; | 
 |   } | 
 | }; | 
 |  | 
 | template <> | 
 | struct bit_not<bool> { | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a) const { return !a; } | 
 | }; | 
 |  | 
 | // Use operators &, |, ^, ~. | 
 | template <typename T> | 
 | struct operator_bitwise_helper { | 
 |   EIGEN_DEVICE_FUNC static inline T bitwise_and(const T& a, const T& b) { return bit_and<T>()(a, b); } | 
 |   EIGEN_DEVICE_FUNC static inline T bitwise_or(const T& a, const T& b) { return bit_or<T>()(a, b); } | 
 |   EIGEN_DEVICE_FUNC static inline T bitwise_xor(const T& a, const T& b) { return bit_xor<T>()(a, b); } | 
 |   EIGEN_DEVICE_FUNC static inline T bitwise_not(const T& a) { return bit_not<T>()(a); } | 
 | }; | 
 |  | 
 | // Apply binary operations byte-by-byte | 
 | template <typename T> | 
 | struct bytewise_bitwise_helper { | 
 |   EIGEN_DEVICE_FUNC static inline T bitwise_and(const T& a, const T& b) { | 
 |     return binary(a, b, bit_and<unsigned char>()); | 
 |   } | 
 |   EIGEN_DEVICE_FUNC static inline T bitwise_or(const T& a, const T& b) { return binary(a, b, bit_or<unsigned char>()); } | 
 |   EIGEN_DEVICE_FUNC static inline T bitwise_xor(const T& a, const T& b) { | 
 |     return binary(a, b, bit_xor<unsigned char>()); | 
 |   } | 
 |   EIGEN_DEVICE_FUNC static inline T bitwise_not(const T& a) { return unary(a, bit_not<unsigned char>()); } | 
 |  | 
 |  private: | 
 |   template <typename Op> | 
 |   EIGEN_DEVICE_FUNC static inline T unary(const T& a, Op op) { | 
 |     const unsigned char* a_ptr = reinterpret_cast<const unsigned char*>(&a); | 
 |     T c; | 
 |     unsigned char* c_ptr = reinterpret_cast<unsigned char*>(&c); | 
 |     for (size_t i = 0; i < sizeof(T); ++i) { | 
 |       *c_ptr++ = op(*a_ptr++); | 
 |     } | 
 |     return c; | 
 |   } | 
 |  | 
 |   template <typename Op> | 
 |   EIGEN_DEVICE_FUNC static inline T binary(const T& a, const T& b, Op op) { | 
 |     const unsigned char* a_ptr = reinterpret_cast<const unsigned char*>(&a); | 
 |     const unsigned char* b_ptr = reinterpret_cast<const unsigned char*>(&b); | 
 |     T c; | 
 |     unsigned char* c_ptr = reinterpret_cast<unsigned char*>(&c); | 
 |     for (size_t i = 0; i < sizeof(T); ++i) { | 
 |       *c_ptr++ = op(*a_ptr++, *b_ptr++); | 
 |     } | 
 |     return c; | 
 |   } | 
 | }; | 
 |  | 
 | // In the general case, use byte-by-byte manipulation. | 
 | template <typename T, typename EnableIf = void> | 
 | struct bitwise_helper : public bytewise_bitwise_helper<T> {}; | 
 |  | 
 | // For integers or non-trivial scalars, use binary operators. | 
 | template <typename T> | 
 | struct bitwise_helper<T, typename std::enable_if_t<is_scalar<T>::value && | 
 |                                                    (NumTraits<T>::IsInteger || NumTraits<T>::RequireInitialization)>> | 
 |     : public operator_bitwise_helper<T> {}; | 
 |  | 
 | /** \internal \returns the bitwise and of \a a and \a b */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pand(const Packet& a, const Packet& b) { | 
 |   return bitwise_helper<Packet>::bitwise_and(a, b); | 
 | } | 
 |  | 
 | /** \internal \returns the bitwise or of \a a and \a b */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet por(const Packet& a, const Packet& b) { | 
 |   return bitwise_helper<Packet>::bitwise_or(a, b); | 
 | } | 
 |  | 
 | /** \internal \returns the bitwise xor of \a a and \a b */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pxor(const Packet& a, const Packet& b) { | 
 |   return bitwise_helper<Packet>::bitwise_xor(a, b); | 
 | } | 
 |  | 
 | /** \internal \returns the bitwise not of \a a */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pnot(const Packet& a) { | 
 |   return bitwise_helper<Packet>::bitwise_not(a); | 
 | } | 
 |  | 
 | /** \internal \returns the bitwise and of \a a and not \a b */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pandnot(const Packet& a, const Packet& b) { | 
 |   return pand(a, pnot(b)); | 
 | } | 
 |  | 
 | // In the general case, use bitwise select. | 
 | template <typename Packet, typename EnableIf = void> | 
 | struct pselect_impl { | 
 |   static EIGEN_DEVICE_FUNC inline Packet run(const Packet& mask, const Packet& a, const Packet& b) { | 
 |     return por(pand(a, mask), pandnot(b, mask)); | 
 |   } | 
 | }; | 
 |  | 
 | // For scalars, use ternary select. | 
 | template <typename Packet> | 
 | struct pselect_impl<Packet, std::enable_if_t<is_scalar<Packet>::value>> { | 
 |   static EIGEN_DEVICE_FUNC inline Packet run(const Packet& mask, const Packet& a, const Packet& b) { | 
 |     return numext::equal_strict(mask, Packet(0)) ? b : a; | 
 |   } | 
 | }; | 
 |  | 
 | /** \internal \returns \a or \b for each field in packet according to \mask */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pselect(const Packet& mask, const Packet& a, const Packet& b) { | 
 |   return pselect_impl<Packet>::run(mask, a, b); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC inline bool pselect<bool>(const bool& cond, const bool& a, const bool& b) { | 
 |   return cond ? a : b; | 
 | } | 
 |  | 
 | /** \internal \returns the min or of \a a and \a b (coeff-wise) | 
 |     If either \a a or \a b are NaN, the result is implementation defined. */ | 
 | template <int NaNPropagation> | 
 | struct pminmax_impl { | 
 |   template <typename Packet, typename Op> | 
 |   static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { | 
 |     return op(a, b); | 
 |   } | 
 | }; | 
 |  | 
 | /** \internal \returns the min or max of \a a and \a b (coeff-wise) | 
 |     If either \a a or \a b are NaN, NaN is returned. */ | 
 | template <> | 
 | struct pminmax_impl<PropagateNaN> { | 
 |   template <typename Packet, typename Op> | 
 |   static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { | 
 |     Packet not_nan_mask_a = pcmp_eq(a, a); | 
 |     Packet not_nan_mask_b = pcmp_eq(b, b); | 
 |     return pselect(not_nan_mask_a, pselect(not_nan_mask_b, op(a, b), b), a); | 
 |   } | 
 | }; | 
 |  | 
 | /** \internal \returns the min or max of \a a and \a b (coeff-wise) | 
 |     If both \a a and \a b are NaN, NaN is returned. | 
 |     Equivalent to std::fmin(a, b).  */ | 
 | template <> | 
 | struct pminmax_impl<PropagateNumbers> { | 
 |   template <typename Packet, typename Op> | 
 |   static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { | 
 |     Packet not_nan_mask_a = pcmp_eq(a, a); | 
 |     Packet not_nan_mask_b = pcmp_eq(b, b); | 
 |     return pselect(not_nan_mask_a, pselect(not_nan_mask_b, op(a, b), a), b); | 
 |   } | 
 | }; | 
 |  | 
 | #define EIGEN_BINARY_OP_NAN_PROPAGATION(Type, Func) [](const Type& a, const Type& b) { return Func(a, b); } | 
 |  | 
 | /** \internal \returns the min of \a a and \a b  (coeff-wise). | 
 |     If \a a or \b b is NaN, the return value is implementation defined. */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, const Packet& b) { | 
 |   return numext::mini(a, b); | 
 | } | 
 |  | 
 | /** \internal \returns the min of \a a and \a b  (coeff-wise). | 
 |     NaNPropagation determines the NaN propagation semantics. */ | 
 | template <int NaNPropagation, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, const Packet& b) { | 
 |   return pminmax_impl<NaNPropagation>::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet, (pmin<Packet>))); | 
 | } | 
 |  | 
 | /** \internal \returns the max of \a a and \a b  (coeff-wise) | 
 |     If \a a or \b b is NaN, the return value is implementation defined. */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, const Packet& b) { | 
 |   return numext::maxi(a, b); | 
 | } | 
 |  | 
 | /** \internal \returns the max of \a a and \a b  (coeff-wise). | 
 |     NaNPropagation determines the NaN propagation semantics. */ | 
 | template <int NaNPropagation, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, const Packet& b) { | 
 |   return pminmax_impl<NaNPropagation>::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet, (pmax<Packet>))); | 
 | } | 
 |  | 
 | /** \internal \returns the absolute value of \a a */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pabs(const Packet& a) { | 
 |   return numext::abs(a); | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC inline unsigned int pabs(const unsigned int& a) { | 
 |   return a; | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC inline unsigned long pabs(const unsigned long& a) { | 
 |   return a; | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC inline unsigned long long pabs(const unsigned long long& a) { | 
 |   return a; | 
 | } | 
 |  | 
 | /** \internal \returns the addsub value of \a a,b */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet paddsub(const Packet& a, const Packet& b) { | 
 |   return pselect(peven_mask(a), padd(a, b), psub(a, b)); | 
 | } | 
 |  | 
 | /** \internal \returns the phase angle of \a a */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet parg(const Packet& a) { | 
 |   using numext::arg; | 
 |   return arg(a); | 
 | } | 
 |  | 
 | /** \internal \returns \a a arithmetically shifted by N bits to the right */ | 
 | template <int N, typename T> | 
 | EIGEN_DEVICE_FUNC inline T parithmetic_shift_right(const T& a) { | 
 |   return numext::arithmetic_shift_right(a, N); | 
 | } | 
 |  | 
 | /** \internal \returns \a a logically shifted by N bits to the right */ | 
 | template <int N, typename T> | 
 | EIGEN_DEVICE_FUNC inline T plogical_shift_right(const T& a) { | 
 |   return numext::logical_shift_right(a, N); | 
 | } | 
 |  | 
 | /** \internal \returns \a a shifted by N bits to the left */ | 
 | template <int N, typename T> | 
 | EIGEN_DEVICE_FUNC inline T plogical_shift_left(const T& a) { | 
 |   return numext::logical_shift_left(a, N); | 
 | } | 
 |  | 
 | /** \internal \returns the significant and exponent of the underlying floating point numbers | 
 |  * See https://en.cppreference.com/w/cpp/numeric/math/frexp | 
 |  */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pfrexp(const Packet& a, Packet& exponent) { | 
 |   int exp; | 
 |   EIGEN_USING_STD(frexp); | 
 |   Packet result = static_cast<Packet>(frexp(a, &exp)); | 
 |   exponent = static_cast<Packet>(exp); | 
 |   return result; | 
 | } | 
 |  | 
 | /** \internal \returns a * 2^((int)exponent) | 
 |  * See https://en.cppreference.com/w/cpp/numeric/math/ldexp | 
 |  */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pldexp(const Packet& a, const Packet& exponent) { | 
 |   EIGEN_USING_STD(ldexp) | 
 |   return static_cast<Packet>(ldexp(a, static_cast<int>(exponent))); | 
 | } | 
 |  | 
 | /** \internal \returns the min of \a a and \a b  (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pabsdiff(const Packet& a, const Packet& b) { | 
 |   return pselect(pcmp_lt(a, b), psub(b, a), psub(a, b)); | 
 | } | 
 |  | 
 | /** \internal \returns a packet version of \a *from, from must be properly aligned */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pload(const typename unpacket_traits<Packet>::type* from) { | 
 |   return *from; | 
 | } | 
 |  | 
 | /** \internal \returns n elements of a packet version of \a *from, from must be properly aligned | 
 |  * offset indicates the starting element in which to load and | 
 |  * offset + n <= unpacket_traits::size | 
 |  * All elements before offset and after the last element loaded will initialized with zero */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pload_partial(const typename unpacket_traits<Packet>::type* from, const Index n, | 
 |                                               const Index offset = 0) { | 
 |   const Index packet_size = unpacket_traits<Packet>::size; | 
 |   eigen_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet"); | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   EIGEN_ALIGN_MAX Scalar elements[packet_size] = {Scalar(0)}; | 
 |   for (Index i = offset; i < numext::mini(n + offset, packet_size); i++) { | 
 |     elements[i] = from[i - offset]; | 
 |   } | 
 |   return pload<Packet>(elements); | 
 | } | 
 |  | 
 | /** \internal \returns a packet version of \a *from, (un-aligned load) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet ploadu(const typename unpacket_traits<Packet>::type* from) { | 
 |   return *from; | 
 | } | 
 |  | 
 | /** \internal \returns n elements of a packet version of \a *from, (un-aligned load) | 
 |  * All elements after the last element loaded will initialized with zero */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet ploadu_partial(const typename unpacket_traits<Packet>::type* from, const Index n, | 
 |                                                const Index offset = 0) { | 
 |   const Index packet_size = unpacket_traits<Packet>::size; | 
 |   eigen_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet"); | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   EIGEN_ALIGN_MAX Scalar elements[packet_size] = {Scalar(0)}; | 
 |   for (Index i = offset; i < numext::mini(n + offset, packet_size); i++) { | 
 |     elements[i] = from[i - offset]; | 
 |   } | 
 |   return pload<Packet>(elements); | 
 | } | 
 |  | 
 | /** \internal \returns a packet version of \a *from, (un-aligned masked load) | 
 |  * There is no generic implementation. We only have implementations for specialized | 
 |  * cases. Generic case should not be called. | 
 |  */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline std::enable_if_t<unpacket_traits<Packet>::masked_load_available, Packet> ploadu( | 
 |     const typename unpacket_traits<Packet>::type* from, typename unpacket_traits<Packet>::mask_t umask); | 
 |  | 
 | /** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pset1(const typename unpacket_traits<Packet>::type& a) { | 
 |   return a; | 
 | } | 
 |  | 
 | /** \internal \returns a packet with constant coefficients set from bits */ | 
 | template <typename Packet, typename BitsType> | 
 | EIGEN_DEVICE_FUNC inline Packet pset1frombits(BitsType a); | 
 |  | 
 | /** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pload1(const typename unpacket_traits<Packet>::type* a) { | 
 |   return pset1<Packet>(*a); | 
 | } | 
 |  | 
 | /** \internal \returns a packet with elements of \a *from duplicated. | 
 |  * For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and | 
 |  * duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]} | 
 |  * Currently, this function is only used for scalar * complex products. | 
 |  */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet ploaddup(const typename unpacket_traits<Packet>::type* from) { | 
 |   return *from; | 
 | } | 
 |  | 
 | /** \internal \returns a packet with elements of \a *from quadrupled. | 
 |  * For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and | 
 |  * replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]} | 
 |  * Currently, this function is only used in matrix products. | 
 |  * For packet-size smaller or equal to 4, this function is equivalent to pload1 | 
 |  */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet ploadquad(const typename unpacket_traits<Packet>::type* from) { | 
 |   return pload1<Packet>(from); | 
 | } | 
 |  | 
 | /** \internal equivalent to | 
 |  * \code | 
 |  * a0 = pload1(a+0); | 
 |  * a1 = pload1(a+1); | 
 |  * a2 = pload1(a+2); | 
 |  * a3 = pload1(a+3); | 
 |  * \endcode | 
 |  * \sa pset1, pload1, ploaddup, pbroadcast2 | 
 |  */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline void pbroadcast4(const typename unpacket_traits<Packet>::type* a, Packet& a0, Packet& a1, | 
 |                                           Packet& a2, Packet& a3) { | 
 |   a0 = pload1<Packet>(a + 0); | 
 |   a1 = pload1<Packet>(a + 1); | 
 |   a2 = pload1<Packet>(a + 2); | 
 |   a3 = pload1<Packet>(a + 3); | 
 | } | 
 |  | 
 | /** \internal equivalent to | 
 |  * \code | 
 |  * a0 = pload1(a+0); | 
 |  * a1 = pload1(a+1); | 
 |  * \endcode | 
 |  * \sa pset1, pload1, ploaddup, pbroadcast4 | 
 |  */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline void pbroadcast2(const typename unpacket_traits<Packet>::type* a, Packet& a0, Packet& a1) { | 
 |   a0 = pload1<Packet>(a + 0); | 
 |   a1 = pload1<Packet>(a + 1); | 
 | } | 
 |  | 
 | /** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet plset(const typename unpacket_traits<Packet>::type& a) { | 
 |   return a; | 
 | } | 
 |  | 
 | /** \internal \returns a packet with constant coefficients \a a, e.g.: (x, 0, x, 0), | 
 |      where x is the value of all 1-bits. */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet peven_mask(const Packet& /*a*/) { | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   const size_t n = unpacket_traits<Packet>::size; | 
 |   EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n]; | 
 |   for (size_t i = 0; i < n; ++i) { | 
 |     memset(elements + i, ((i & 1) == 0 ? 0xff : 0), sizeof(Scalar)); | 
 |   } | 
 |   return ploadu<Packet>(elements); | 
 | } | 
 |  | 
 | /** \internal copy the packet \a from to \a *to, \a to must be properly aligned */ | 
 | template <typename Scalar, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from) { | 
 |   (*to) = from; | 
 | } | 
 |  | 
 | /** \internal copy n elements of the packet \a from to \a *to, \a to must be properly aligned | 
 |  * offset indicates the starting element in which to store and | 
 |  * offset + n <= unpacket_traits::size */ | 
 | template <typename Scalar, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline void pstore_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0) { | 
 |   const Index packet_size = unpacket_traits<Packet>::size; | 
 |   eigen_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet"); | 
 |   EIGEN_ALIGN_MAX Scalar elements[packet_size]; | 
 |   pstore<Scalar>(elements, from); | 
 |   for (Index i = 0; i < numext::mini(n, packet_size - offset); i++) { | 
 |     to[i] = elements[i + offset]; | 
 |   } | 
 | } | 
 |  | 
 | /** \internal copy the packet \a from to \a *to, (un-aligned store) */ | 
 | template <typename Scalar, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from) { | 
 |   (*to) = from; | 
 | } | 
 |  | 
 | /** \internal copy n elements of the packet \a from to \a *to, (un-aligned store) */ | 
 | template <typename Scalar, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline void pstoreu_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0) { | 
 |   const Index packet_size = unpacket_traits<Packet>::size; | 
 |   eigen_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet"); | 
 |   EIGEN_ALIGN_MAX Scalar elements[packet_size]; | 
 |   pstore<Scalar>(elements, from); | 
 |   for (Index i = 0; i < numext::mini(n, packet_size - offset); i++) { | 
 |     to[i] = elements[i + offset]; | 
 |   } | 
 | } | 
 |  | 
 | /** \internal copy the packet \a from to \a *to, (un-aligned store with a mask) | 
 |  * There is no generic implementation. We only have implementations for specialized | 
 |  * cases. Generic case should not be called. | 
 |  */ | 
 | template <typename Scalar, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline std::enable_if_t<unpacket_traits<Packet>::masked_store_available, void> pstoreu( | 
 |     Scalar* to, const Packet& from, typename unpacket_traits<Packet>::mask_t umask); | 
 |  | 
 | template <typename Scalar, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/) { | 
 |   return ploadu<Packet>(from); | 
 | } | 
 |  | 
 | template <typename Scalar, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pgather_partial(const Scalar* from, Index stride, const Index n) { | 
 |   const Index packet_size = unpacket_traits<Packet>::size; | 
 |   EIGEN_ALIGN_MAX Scalar elements[packet_size] = {Scalar(0)}; | 
 |   for (Index i = 0; i < numext::mini(n, packet_size); i++) { | 
 |     elements[i] = from[i * stride]; | 
 |   } | 
 |   return pload<Packet>(elements); | 
 | } | 
 |  | 
 | template <typename Scalar, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/) { | 
 |   pstore(to, from); | 
 | } | 
 |  | 
 | template <typename Scalar, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline void pscatter_partial(Scalar* to, const Packet& from, Index stride, const Index n) { | 
 |   const Index packet_size = unpacket_traits<Packet>::size; | 
 |   EIGEN_ALIGN_MAX Scalar elements[packet_size]; | 
 |   pstore<Scalar>(elements, from); | 
 |   for (Index i = 0; i < numext::mini(n, packet_size); i++) { | 
 |     to[i * stride] = elements[i]; | 
 |   } | 
 | } | 
 |  | 
 | /** \internal tries to do cache prefetching of \a addr */ | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr) { | 
 | #if defined(EIGEN_HIP_DEVICE_COMPILE) | 
 |   // do nothing | 
 | #elif defined(EIGEN_CUDA_ARCH) | 
 | #if defined(__LP64__) || EIGEN_OS_WIN64 | 
 |   // 64-bit pointer operand constraint for inlined asm | 
 |   asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr)); | 
 | #else | 
 |   // 32-bit pointer operand constraint for inlined asm | 
 |   asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr)); | 
 | #endif | 
 | #elif (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC) | 
 |   __builtin_prefetch(addr); | 
 | #endif | 
 | } | 
 |  | 
 | /** \internal \returns the reversed elements of \a a*/ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a) { | 
 |   return a; | 
 | } | 
 |  | 
 | /** \internal \returns \a a with real and imaginary part flipped (for complex type only) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a) { | 
 |   return Packet(numext::imag(a), numext::real(a)); | 
 | } | 
 |  | 
 | /************************** | 
 |  * Special math functions | 
 |  ***************************/ | 
 |  | 
 | /** \internal \returns isnan(a) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pisnan(const Packet& a) { | 
 |   return pandnot(ptrue(a), pcmp_eq(a, a)); | 
 | } | 
 |  | 
 | /** \internal \returns isinf(a) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pisinf(const Packet& a) { | 
 |   using Scalar = typename unpacket_traits<Packet>::type; | 
 |   constexpr Scalar inf = NumTraits<Scalar>::infinity(); | 
 |   return pcmp_eq(pabs(a), pset1<Packet>(inf)); | 
 | } | 
 |  | 
 | /** \internal \returns the sine of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psin(const Packet& a) { | 
 |   EIGEN_USING_STD(sin); | 
 |   return sin(a); | 
 | } | 
 |  | 
 | /** \internal \returns the cosine of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcos(const Packet& a) { | 
 |   EIGEN_USING_STD(cos); | 
 |   return cos(a); | 
 | } | 
 |  | 
 | /** \internal \returns the tan of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet ptan(const Packet& a) { | 
 |   EIGEN_USING_STD(tan); | 
 |   return tan(a); | 
 | } | 
 |  | 
 | /** \internal \returns the arc sine of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pasin(const Packet& a) { | 
 |   EIGEN_USING_STD(asin); | 
 |   return asin(a); | 
 | } | 
 |  | 
 | /** \internal \returns the arc cosine of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pacos(const Packet& a) { | 
 |   EIGEN_USING_STD(acos); | 
 |   return acos(a); | 
 | } | 
 |  | 
 | /** \internal \returns the hyperbolic sine of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psinh(const Packet& a) { | 
 |   EIGEN_USING_STD(sinh); | 
 |   return sinh(a); | 
 | } | 
 |  | 
 | /** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcosh(const Packet& a) { | 
 |   EIGEN_USING_STD(cosh); | 
 |   return cosh(a); | 
 | } | 
 |  | 
 | /** \internal \returns the arc tangent of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet patan(const Packet& a) { | 
 |   EIGEN_USING_STD(atan); | 
 |   return atan(a); | 
 | } | 
 |  | 
 | /** \internal \returns the hyperbolic tan of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet ptanh(const Packet& a) { | 
 |   EIGEN_USING_STD(tanh); | 
 |   return tanh(a); | 
 | } | 
 |  | 
 | /** \internal \returns the arc tangent of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet patanh(const Packet& a) { | 
 |   EIGEN_USING_STD(atanh); | 
 |   return atanh(a); | 
 | } | 
 |  | 
 | /** \internal \returns the exp of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexp(const Packet& a) { | 
 |   EIGEN_USING_STD(exp); | 
 |   return exp(a); | 
 | } | 
 |  | 
 | /** \internal \returns the expm1 of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexpm1(const Packet& a) { | 
 |   return numext::expm1(a); | 
 | } | 
 |  | 
 | /** \internal \returns the log of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog(const Packet& a) { | 
 |   EIGEN_USING_STD(log); | 
 |   return log(a); | 
 | } | 
 |  | 
 | /** \internal \returns the log1p of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog1p(const Packet& a) { | 
 |   return numext::log1p(a); | 
 | } | 
 |  | 
 | /** \internal \returns the log10 of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog10(const Packet& a) { | 
 |   EIGEN_USING_STD(log10); | 
 |   return log10(a); | 
 | } | 
 |  | 
 | /** \internal \returns the log10 of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog2(const Packet& a) { | 
 |   using Scalar = typename internal::unpacket_traits<Packet>::type; | 
 |   using RealScalar = typename NumTraits<Scalar>::Real; | 
 |   return pmul(pset1<Packet>(Scalar(RealScalar(EIGEN_LOG2E))), plog(a)); | 
 | } | 
 |  | 
 | /** \internal \returns the square-root of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psqrt(const Packet& a) { | 
 |   return numext::sqrt(a); | 
 | } | 
 |  | 
 | /** \internal \returns the cube-root of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcbrt(const Packet& a) { | 
 |   return numext::cbrt(a); | 
 | } | 
 |  | 
 | template <typename Packet, bool IsScalar = is_scalar<Packet>::value, | 
 |           bool IsInteger = NumTraits<typename unpacket_traits<Packet>::type>::IsInteger> | 
 | struct nearest_integer_packetop_impl { | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run_floor(const Packet& x) { return numext::floor(x); } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run_ceil(const Packet& x) { return numext::ceil(x); } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run_rint(const Packet& x) { return numext::rint(x); } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run_round(const Packet& x) { return numext::round(x); } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run_trunc(const Packet& x) { return numext::trunc(x); } | 
 | }; | 
 |  | 
 | /** \internal \returns the rounded value of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pround(const Packet& a) { | 
 |   return nearest_integer_packetop_impl<Packet>::run_round(a); | 
 | } | 
 |  | 
 | /** \internal \returns the floor of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pfloor(const Packet& a) { | 
 |   return nearest_integer_packetop_impl<Packet>::run_floor(a); | 
 | } | 
 |  | 
 | /** \internal \returns the rounded value of \a a (coeff-wise) with current | 
 |  * rounding mode */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet print(const Packet& a) { | 
 |   return nearest_integer_packetop_impl<Packet>::run_rint(a); | 
 | } | 
 |  | 
 | /** \internal \returns the ceil of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pceil(const Packet& a) { | 
 |   return nearest_integer_packetop_impl<Packet>::run_ceil(a); | 
 | } | 
 |  | 
 | /** \internal \returns the truncation of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet ptrunc(const Packet& a) { | 
 |   return nearest_integer_packetop_impl<Packet>::run_trunc(a); | 
 | } | 
 |  | 
 | template <typename Packet, typename EnableIf = void> | 
 | struct psign_impl { | 
 |   static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a) { return numext::sign(a); } | 
 | }; | 
 |  | 
 | /** \internal \returns the sign of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet psign(const Packet& a) { | 
 |   return psign_impl<Packet>::run(a); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC inline bool psign(const bool& a) { | 
 |   return a; | 
 | } | 
 |  | 
 | /** \internal \returns the first element of a packet */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type pfirst(const Packet& a) { | 
 |   return a; | 
 | } | 
 |  | 
 | /** \internal \returns the sum of the elements of upper and lower half of \a a if \a a is larger than 4. | 
 |  * For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7} | 
 |  * For packet-size smaller or equal to 4, this boils down to a noop. | 
 |  */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline std::conditional_t<(unpacket_traits<Packet>::size % 8) == 0, | 
 |                                             typename unpacket_traits<Packet>::half, Packet> | 
 | predux_half_dowto4(const Packet& a) { | 
 |   return a; | 
 | } | 
 |  | 
 | // Slow generic implementation of Packet reduction. | 
 | template <typename Packet, typename Op> | 
 | EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_helper(const Packet& a, Op op) { | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   const size_t n = unpacket_traits<Packet>::size; | 
 |   EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n]; | 
 |   pstoreu<Scalar>(elements, a); | 
 |   for (size_t k = n / 2; k > 0; k /= 2) { | 
 |     for (size_t i = 0; i < k; ++i) { | 
 |       elements[i] = op(elements[i], elements[i + k]); | 
 |     } | 
 |   } | 
 |   return elements[0]; | 
 | } | 
 |  | 
 | /** \internal \returns the sum of the elements of \a a*/ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux(const Packet& a) { | 
 |   return a; | 
 | } | 
 |  | 
 | /** \internal \returns the product of the elements of \a a */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a) { | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmul<Scalar>))); | 
 | } | 
 |  | 
 | /** \internal \returns the min of the elements of \a a */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(const Packet& a) { | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin<PropagateFast, Scalar>))); | 
 | } | 
 |  | 
 | template <int NaNPropagation, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(const Packet& a) { | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin<NaNPropagation, Scalar>))); | 
 | } | 
 |  | 
 | /** \internal \returns the min of the elements of \a a */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(const Packet& a) { | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax<PropagateFast, Scalar>))); | 
 | } | 
 |  | 
 | template <int NaNPropagation, typename Packet> | 
 | EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(const Packet& a) { | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax<NaNPropagation, Scalar>))); | 
 | } | 
 |  | 
 | #undef EIGEN_BINARY_OP_NAN_PROPAGATION | 
 |  | 
 | /** \internal \returns true if all coeffs of \a a means "true" | 
 |  * It is supposed to be called on values returned by pcmp_*. | 
 |  */ | 
 | // not needed yet | 
 | // template<typename Packet> EIGEN_DEVICE_FUNC inline bool predux_all(const Packet& a) | 
 | // { return bool(a); } | 
 |  | 
 | /** \internal \returns true if any coeffs of \a a means "true" | 
 |  * It is supposed to be called on values returned by pcmp_*. | 
 |  */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline bool predux_any(const Packet& a) { | 
 |   // Dirty but generic implementation where "true" is assumed to be non 0 and all the sames. | 
 |   // It is expected that "true" is either: | 
 |   //  - Scalar(1) | 
 |   //  - bits full of ones (NaN for floats), | 
 |   //  - or first bit equals to 1 (1 for ints, smallest denormal for floats). | 
 |   // For all these cases, taking the sum is just fine, and this boils down to a no-op for scalars. | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   return numext::not_equal_strict(predux(a), Scalar(0)); | 
 | } | 
 |  | 
 | /*************************************************************************** | 
 |  * The following functions might not have to be overwritten for vectorized types | 
 |  ***************************************************************************/ | 
 |  | 
 | // FMA instructions. | 
 | /** \internal \returns a * b + c (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pmadd(const Packet& a, const Packet& b, const Packet& c) { | 
 |   return padd(pmul(a, b), c); | 
 | } | 
 |  | 
 | /** \internal \returns a * b - c (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pmsub(const Packet& a, const Packet& b, const Packet& c) { | 
 |   return psub(pmul(a, b), c); | 
 | } | 
 |  | 
 | /** \internal \returns -(a * b) + c (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pnmadd(const Packet& a, const Packet& b, const Packet& c) { | 
 |   return psub(c, pmul(a, b)); | 
 | } | 
 |  | 
 | /** \internal \returns -((a * b + c) (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pnmsub(const Packet& a, const Packet& b, const Packet& c) { | 
 |   return pnegate(pmadd(a, b, c)); | 
 | } | 
 |  | 
 | /** \internal copy a packet with constant coefficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned | 
 |  */ | 
 | // NOTE: this function must really be templated on the packet type (think about different packet types for the same | 
 | // scalar type) | 
 | template <typename Packet> | 
 | inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename unpacket_traits<Packet>::type& a) { | 
 |   pstore(to, pset1<Packet>(a)); | 
 | } | 
 |  | 
 | /** \internal \returns a packet version of \a *from. | 
 |  * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ | 
 | template <typename Packet, int Alignment> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits<Packet>::type* from) { | 
 |   if (Alignment >= unpacket_traits<Packet>::alignment) | 
 |     return pload<Packet>(from); | 
 |   else | 
 |     return ploadu<Packet>(from); | 
 | } | 
 |  | 
 | /** \internal \returns n elements of a packet version of \a *from. | 
 |  * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ | 
 | template <typename Packet, int Alignment> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_partial(const typename unpacket_traits<Packet>::type* from, | 
 |                                                             const Index n, const Index offset = 0) { | 
 |   if (Alignment >= unpacket_traits<Packet>::alignment) | 
 |     return pload_partial<Packet>(from, n, offset); | 
 |   else | 
 |     return ploadu_partial<Packet>(from, n, offset); | 
 | } | 
 |  | 
 | /** \internal copy the packet \a from to \a *to. | 
 |  * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ | 
 | template <typename Scalar, typename Packet, int Alignment> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from) { | 
 |   if (Alignment >= unpacket_traits<Packet>::alignment) | 
 |     pstore(to, from); | 
 |   else | 
 |     pstoreu(to, from); | 
 | } | 
 |  | 
 | /** \internal copy n elements of the packet \a from to \a *to. | 
 |  * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ | 
 | template <typename Scalar, typename Packet, int Alignment> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret_partial(Scalar* to, const Packet& from, const Index n, | 
 |                                                            const Index offset = 0) { | 
 |   if (Alignment >= unpacket_traits<Packet>::alignment) | 
 |     pstore_partial(to, from, n, offset); | 
 |   else | 
 |     pstoreu_partial(to, from, n, offset); | 
 | } | 
 |  | 
 | /** \internal \returns a packet version of \a *from. | 
 |  * Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the | 
 |  * hardware if available to speedup the loading of data that won't be modified | 
 |  * by the current computation. | 
 |  */ | 
 | template <typename Packet, int LoadMode> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_ro(const typename unpacket_traits<Packet>::type* from) { | 
 |   return ploadt<Packet, LoadMode>(from); | 
 | } | 
 |  | 
 | /*************************************************************************** | 
 |  * Fast complex products (GCC generates a function call which is very slow) | 
 |  ***************************************************************************/ | 
 |  | 
 | // Eigen+CUDA does not support complexes. | 
 | #if !defined(EIGEN_GPUCC) | 
 |  | 
 | template <> | 
 | inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b) { | 
 |   return std::complex<float>(a.real() * b.real() - a.imag() * b.imag(), a.imag() * b.real() + a.real() * b.imag()); | 
 | } | 
 |  | 
 | template <> | 
 | inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b) { | 
 |   return std::complex<double>(a.real() * b.real() - a.imag() * b.imag(), a.imag() * b.real() + a.real() * b.imag()); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /*************************************************************************** | 
 |  * PacketBlock, that is a collection of N packets where the number of words | 
 |  * in the packet is a multiple of N. | 
 |  ***************************************************************************/ | 
 | template <typename Packet, int N = unpacket_traits<Packet>::size> | 
 | struct PacketBlock { | 
 |   Packet packet[N]; | 
 | }; | 
 |  | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock<Packet, 1>& /*kernel*/) { | 
 |   // Nothing to do in the scalar case, i.e. a 1x1 matrix. | 
 | } | 
 |  | 
 | /*************************************************************************** | 
 |  * Selector, i.e. vector of N boolean values used to select (i.e. blend) | 
 |  * words from 2 packets. | 
 |  ***************************************************************************/ | 
 | template <size_t N> | 
 | struct Selector { | 
 |   bool select[N]; | 
 | }; | 
 |  | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet pblend(const Selector<unpacket_traits<Packet>::size>& ifPacket, | 
 |                                        const Packet& thenPacket, const Packet& elsePacket) { | 
 |   return ifPacket.select[0] ? thenPacket : elsePacket; | 
 | } | 
 |  | 
 | /** \internal \returns 1 / a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC inline Packet preciprocal(const Packet& a) { | 
 |   using Scalar = typename unpacket_traits<Packet>::type; | 
 |   return pdiv(pset1<Packet>(Scalar(1)), a); | 
 | } | 
 |  | 
 | /** \internal \returns the reciprocal square-root of \a a (coeff-wise) */ | 
 | template <typename Packet> | 
 | EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet prsqrt(const Packet& a) { | 
 |   return preciprocal<Packet>(psqrt(a)); | 
 | } | 
 |  | 
 | template <typename Packet, bool IsScalar = is_scalar<Packet>::value, | 
 |           bool IsInteger = NumTraits<typename unpacket_traits<Packet>::type>::IsInteger> | 
 | struct psignbit_impl; | 
 | template <typename Packet, bool IsInteger> | 
 | struct psignbit_impl<Packet, true, IsInteger> { | 
 |   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Packet run(const Packet& a) { return numext::signbit(a); } | 
 | }; | 
 | template <typename Packet> | 
 | struct psignbit_impl<Packet, false, false> { | 
 |   // generic implementation if not specialized in PacketMath.h | 
 |   // slower than arithmetic shift | 
 |   typedef typename unpacket_traits<Packet>::type Scalar; | 
 |   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static Packet run(const Packet& a) { | 
 |     const Packet cst_pos_one = pset1<Packet>(Scalar(1)); | 
 |     const Packet cst_neg_one = pset1<Packet>(Scalar(-1)); | 
 |     return pcmp_eq(por(pand(a, cst_neg_one), cst_pos_one), cst_neg_one); | 
 |   } | 
 | }; | 
 | template <typename Packet> | 
 | struct psignbit_impl<Packet, false, true> { | 
 |   // generic implementation for integer packets | 
 |   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Packet run(const Packet& a) { return pcmp_lt(a, pzero(a)); } | 
 | }; | 
 | /** \internal \returns the sign bit of \a a as a bitmask*/ | 
 | template <typename Packet> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE constexpr Packet psignbit(const Packet& a) { | 
 |   return psignbit_impl<Packet>::run(a); | 
 | } | 
 |  | 
 | /** \internal \returns the 2-argument arc tangent of \a y and \a x (coeff-wise) */ | 
 | template <typename Packet, std::enable_if_t<is_scalar<Packet>::value, int> = 0> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet patan2(const Packet& y, const Packet& x) { | 
 |   return numext::atan2(y, x); | 
 | } | 
 |  | 
 | /** \internal \returns the 2-argument arc tangent of \a y and \a x (coeff-wise) */ | 
 | template <typename Packet, std::enable_if_t<!is_scalar<Packet>::value, int> = 0> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet patan2(const Packet& y, const Packet& x) { | 
 |   typedef typename internal::unpacket_traits<Packet>::type Scalar; | 
 |  | 
 |   // See https://en.cppreference.com/w/cpp/numeric/math/atan2 | 
 |   // for how corner cases are supposed to be handled according to the | 
 |   // IEEE floating-point standard (IEC 60559). | 
 |   const Packet kSignMask = pset1<Packet>(-Scalar(0)); | 
 |   const Packet kZero = pzero(x); | 
 |   const Packet kOne = pset1<Packet>(Scalar(1)); | 
 |   const Packet kPi = pset1<Packet>(Scalar(EIGEN_PI)); | 
 |  | 
 |   const Packet x_has_signbit = psignbit(x); | 
 |   const Packet y_signmask = pand(y, kSignMask); | 
 |   const Packet x_signmask = pand(x, kSignMask); | 
 |   const Packet result_signmask = pxor(y_signmask, x_signmask); | 
 |   const Packet shift = por(pand(x_has_signbit, kPi), y_signmask); | 
 |  | 
 |   const Packet x_and_y_are_same = pcmp_eq(pabs(x), pabs(y)); | 
 |   const Packet x_and_y_are_zero = pcmp_eq(por(x, y), kZero); | 
 |  | 
 |   Packet arg = pdiv(y, x); | 
 |   arg = pselect(x_and_y_are_same, por(kOne, result_signmask), arg); | 
 |   arg = pselect(x_and_y_are_zero, result_signmask, arg); | 
 |  | 
 |   Packet result = patan(arg); | 
 |   result = padd(result, shift); | 
 |   return result; | 
 | } | 
 |  | 
 | /** \internal \returns the argument of \a a as a complex number */ | 
 | template <typename Packet, std::enable_if_t<is_scalar<Packet>::value, int> = 0> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pcarg(const Packet& a) { | 
 |   return Packet(numext::arg(a)); | 
 | } | 
 |  | 
 | /** \internal \returns the argument of \a a as a complex number */ | 
 | template <typename Packet, std::enable_if_t<!is_scalar<Packet>::value, int> = 0> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pcarg(const Packet& a) { | 
 |   EIGEN_STATIC_ASSERT(NumTraits<typename unpacket_traits<Packet>::type>::IsComplex, | 
 |                       THIS METHOD IS FOR COMPLEX TYPES ONLY) | 
 |   using RealPacket = typename unpacket_traits<Packet>::as_real; | 
 |   // a                                              // r     i    r     i    ... | 
 |   RealPacket aflip = pcplxflip(a).v;                // i     r    i     r    ... | 
 |   RealPacket result = patan2(aflip, a.v);           // atan2 crap atan2 crap ... | 
 |   return (Packet)pand(result, peven_mask(result));  // atan2 0    atan2 0    ... | 
 | } | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_GENERIC_PACKET_MATH_H |