| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_MATHFUNCTIONS_H | 
 | #define EIGEN_MATHFUNCTIONS_H | 
 |  | 
 | // TODO this should better be moved to NumTraits | 
 | // Source: WolframAlpha | 
 | #define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L | 
 | #define EIGEN_LOG2E 1.442695040888963407359924681001892137426645954152985934135449406931109219L | 
 | #define EIGEN_LN2 0.693147180559945309417232121458176568075500134360255254120680009493393621L | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** \internal \class global_math_functions_filtering_base | 
 |  * | 
 |  * What it does: | 
 |  * Defines a typedef 'type' as follows: | 
 |  * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then | 
 |  *   global_math_functions_filtering_base<T>::type is a typedef for it. | 
 |  * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T. | 
 |  * | 
 |  * How it's used: | 
 |  * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. | 
 |  * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know | 
 |  * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>. | 
 |  * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial | 
 |  * specialization won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells | 
 |  * it. | 
 |  * | 
 |  * How it's implemented: | 
 |  * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you | 
 |  * replace the typename dummy by an integer template parameter, it doesn't work anymore! | 
 |  */ | 
 |  | 
 | template <typename T, typename dummy = void> | 
 | struct global_math_functions_filtering_base { | 
 |   typedef T type; | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct always_void { | 
 |   typedef void type; | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct global_math_functions_filtering_base< | 
 |     T, typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type> { | 
 |   typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; | 
 | }; | 
 |  | 
 | #define EIGEN_MATHFUNC_IMPL(func, scalar) \ | 
 |   Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type> | 
 | #define EIGEN_MATHFUNC_RETVAL(func, scalar) \ | 
 |   typename Eigen::internal::func##_retval<  \ | 
 |       typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of real                                                 * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
 | struct real_default_impl { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { return x; } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct real_default_impl<Scalar, true> { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { | 
 |     using std::real; | 
 |     return real(x); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct real_impl : real_default_impl<Scalar> {}; | 
 |  | 
 | #if defined(EIGEN_GPU_COMPILE_PHASE) | 
 | template <typename T> | 
 | struct real_impl<std::complex<T>> { | 
 |   typedef T RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline T run(const std::complex<T>& x) { return x.real(); } | 
 | }; | 
 | #endif | 
 |  | 
 | template <typename Scalar> | 
 | struct real_retval { | 
 |   typedef typename NumTraits<Scalar>::Real type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of imag                                                 * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
 | struct imag_default_impl { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar&) { return RealScalar(0); } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct imag_default_impl<Scalar, true> { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { | 
 |     using std::imag; | 
 |     return imag(x); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct imag_impl : imag_default_impl<Scalar> {}; | 
 |  | 
 | #if defined(EIGEN_GPU_COMPILE_PHASE) | 
 | template <typename T> | 
 | struct imag_impl<std::complex<T>> { | 
 |   typedef T RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline T run(const std::complex<T>& x) { return x.imag(); } | 
 | }; | 
 | #endif | 
 |  | 
 | template <typename Scalar> | 
 | struct imag_retval { | 
 |   typedef typename NumTraits<Scalar>::Real type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of real_ref                                             * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename Scalar> | 
 | struct real_ref_impl { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar& run(Scalar& x) { return reinterpret_cast<RealScalar*>(&x)[0]; } | 
 |   EIGEN_DEVICE_FUNC static inline const RealScalar& run(const Scalar& x) { | 
 |     return reinterpret_cast<const RealScalar*>(&x)[0]; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct real_ref_retval { | 
 |   typedef typename NumTraits<Scalar>::Real& type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of imag_ref                                             * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename Scalar, bool IsComplex> | 
 | struct imag_ref_default_impl { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar& run(Scalar& x) { return reinterpret_cast<RealScalar*>(&x)[1]; } | 
 |   EIGEN_DEVICE_FUNC static inline const RealScalar& run(const Scalar& x) { | 
 |     return reinterpret_cast<const RealScalar*>(&x)[1]; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct imag_ref_default_impl<Scalar, false> { | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline Scalar run(Scalar&) { return Scalar(0); } | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline const Scalar run(const Scalar&) { return Scalar(0); } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; | 
 |  | 
 | template <typename Scalar> | 
 | struct imag_ref_retval { | 
 |   typedef typename NumTraits<Scalar>::Real& type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of conj                                                 * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
 | struct conj_default_impl { | 
 |   EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { return x; } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct conj_default_impl<Scalar, true> { | 
 |   EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { | 
 |     using std::conj; | 
 |     return conj(x); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
 | struct conj_impl : conj_default_impl<Scalar, IsComplex> {}; | 
 |  | 
 | template <typename Scalar> | 
 | struct conj_retval { | 
 |   typedef Scalar type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of abs2                                                 * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename Scalar, bool IsComplex> | 
 | struct abs2_impl_default { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { return x * x; } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct abs2_impl_default<Scalar, true>  // IsComplex | 
 | { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { return x.real() * x.real() + x.imag() * x.imag(); } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct abs2_impl { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { | 
 |     return abs2_impl_default<Scalar, NumTraits<Scalar>::IsComplex>::run(x); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct abs2_retval { | 
 |   typedef typename NumTraits<Scalar>::Real type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of sqrt/rsqrt                                             * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename Scalar> | 
 | struct sqrt_impl { | 
 |   EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE Scalar run(const Scalar& x) { | 
 |     EIGEN_USING_STD(sqrt); | 
 |     return sqrt(x); | 
 |   } | 
 | }; | 
 |  | 
 | // Complex sqrt defined in MathFunctionsImpl.h. | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& a_x); | 
 |  | 
 | // Custom implementation is faster than `std::sqrt`, works on | 
 | // GPU, and correctly handles special cases (unlike MSVC). | 
 | template <typename T> | 
 | struct sqrt_impl<std::complex<T>> { | 
 |   EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE std::complex<T> run(const std::complex<T>& x) { | 
 |     return complex_sqrt<T>(x); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct sqrt_retval { | 
 |   typedef Scalar type; | 
 | }; | 
 |  | 
 | // Default implementation relies on numext::sqrt, at bottom of file. | 
 | template <typename T> | 
 | struct rsqrt_impl; | 
 |  | 
 | // Complex rsqrt defined in MathFunctionsImpl.h. | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& a_x); | 
 |  | 
 | template <typename T> | 
 | struct rsqrt_impl<std::complex<T>> { | 
 |   EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE std::complex<T> run(const std::complex<T>& x) { | 
 |     return complex_rsqrt<T>(x); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct rsqrt_retval { | 
 |   typedef Scalar type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of norm1                                                * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename Scalar, bool IsComplex> | 
 | struct norm1_default_impl; | 
 |  | 
 | template <typename Scalar> | 
 | struct norm1_default_impl<Scalar, true> { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { | 
 |     EIGEN_USING_STD(abs); | 
 |     return abs(x.real()) + abs(x.imag()); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct norm1_default_impl<Scalar, false> { | 
 |   EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { | 
 |     EIGEN_USING_STD(abs); | 
 |     return abs(x); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; | 
 |  | 
 | template <typename Scalar> | 
 | struct norm1_retval { | 
 |   typedef typename NumTraits<Scalar>::Real type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of hypot                                                * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename Scalar> | 
 | struct hypot_impl; | 
 |  | 
 | template <typename Scalar> | 
 | struct hypot_retval { | 
 |   typedef typename NumTraits<Scalar>::Real type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of cast                                                 * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename OldType, typename NewType, typename EnableIf = void> | 
 | struct cast_impl { | 
 |   EIGEN_DEVICE_FUNC static inline NewType run(const OldType& x) { return static_cast<NewType>(x); } | 
 | }; | 
 |  | 
 | template <typename OldType> | 
 | struct cast_impl<OldType, bool> { | 
 |   EIGEN_DEVICE_FUNC static inline bool run(const OldType& x) { return x != OldType(0); } | 
 | }; | 
 |  | 
 | // Casting from S -> Complex<T> leads to an implicit conversion from S to T, | 
 | // generating warnings on clang.  Here we explicitly cast the real component. | 
 | template <typename OldType, typename NewType> | 
 | struct cast_impl<OldType, NewType, | 
 |                  typename std::enable_if_t<!NumTraits<OldType>::IsComplex && NumTraits<NewType>::IsComplex>> { | 
 |   EIGEN_DEVICE_FUNC static inline NewType run(const OldType& x) { | 
 |     typedef typename NumTraits<NewType>::Real NewReal; | 
 |     return static_cast<NewType>(static_cast<NewReal>(x)); | 
 |   } | 
 | }; | 
 |  | 
 | // here, for once, we're plainly returning NewType: we don't want cast to do weird things. | 
 |  | 
 | template <typename OldType, typename NewType> | 
 | EIGEN_DEVICE_FUNC inline NewType cast(const OldType& x) { | 
 |   return cast_impl<OldType, NewType>::run(x); | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of arg                                                     * | 
 |  ****************************************************************************/ | 
 |  | 
 | // Visual Studio 2017 has a bug where arg(float) returns 0 for negative inputs. | 
 | // This seems to be fixed in VS 2019. | 
 | #if (!EIGEN_COMP_MSVC || EIGEN_COMP_MSVC >= 1920) | 
 | // std::arg is only defined for types of std::complex, or integer types or float/double/long double | 
 | template <typename Scalar, bool HasStdImpl = NumTraits<Scalar>::IsComplex || is_integral<Scalar>::value || | 
 |                                              is_same<Scalar, float>::value || is_same<Scalar, double>::value || | 
 |                                              is_same<Scalar, long double>::value> | 
 | struct arg_default_impl; | 
 |  | 
 | template <typename Scalar> | 
 | struct arg_default_impl<Scalar, true> { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { | 
 |     // There is no official ::arg on device in CUDA/HIP, so we always need to use std::arg. | 
 |     using std::arg; | 
 |     return static_cast<RealScalar>(arg(x)); | 
 |   } | 
 | }; | 
 |  | 
 | // Must be non-complex floating-point type (e.g. half/bfloat16). | 
 | template <typename Scalar> | 
 | struct arg_default_impl<Scalar, false> { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { | 
 |     return (x < Scalar(0)) ? RealScalar(EIGEN_PI) : RealScalar(0); | 
 |   } | 
 | }; | 
 | #else | 
 | template <typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
 | struct arg_default_impl { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { | 
 |     return (x < RealScalar(0)) ? RealScalar(EIGEN_PI) : RealScalar(0); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct arg_default_impl<Scalar, true> { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC static inline RealScalar run(const Scalar& x) { | 
 |     EIGEN_USING_STD(arg); | 
 |     return arg(x); | 
 |   } | 
 | }; | 
 | #endif | 
 | template <typename Scalar> | 
 | struct arg_impl : arg_default_impl<Scalar> {}; | 
 |  | 
 | template <typename Scalar> | 
 | struct arg_retval { | 
 |   typedef typename NumTraits<Scalar>::Real type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of expm1                                                   * | 
 |  ****************************************************************************/ | 
 |  | 
 | // This implementation is based on GSL Math's expm1. | 
 | namespace std_fallback { | 
 | // fallback expm1 implementation in case there is no expm1(Scalar) function in namespace of Scalar, | 
 | // or that there is no suitable std::expm1 function available. Implementation | 
 | // attributed to Kahan. See: http://www.plunk.org/~hatch/rightway.php. | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline Scalar expm1(const Scalar& x) { | 
 |   EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   EIGEN_USING_STD(exp); | 
 |   Scalar u = exp(x); | 
 |   if (numext::equal_strict(u, Scalar(1))) { | 
 |     return x; | 
 |   } | 
 |   Scalar um1 = u - RealScalar(1); | 
 |   if (numext::equal_strict(um1, Scalar(-1))) { | 
 |     return RealScalar(-1); | 
 |   } | 
 |  | 
 |   EIGEN_USING_STD(log); | 
 |   Scalar logu = log(u); | 
 |   return numext::equal_strict(u, logu) ? u : (u - RealScalar(1)) * x / logu; | 
 | } | 
 | }  // namespace std_fallback | 
 |  | 
 | template <typename Scalar> | 
 | struct expm1_impl { | 
 |   EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { | 
 |     EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
 |     EIGEN_USING_STD(expm1); | 
 |     return expm1(x); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct expm1_retval { | 
 |   typedef Scalar type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of log                                                     * | 
 |  ****************************************************************************/ | 
 |  | 
 | // Complex log defined in MathFunctionsImpl.h. | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z); | 
 |  | 
 | template <typename Scalar> | 
 | struct log_impl { | 
 |   EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { | 
 |     EIGEN_USING_STD(log); | 
 |     return static_cast<Scalar>(log(x)); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct log_impl<std::complex<Scalar>> { | 
 |   EIGEN_DEVICE_FUNC static inline std::complex<Scalar> run(const std::complex<Scalar>& z) { return complex_log(z); } | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of log1p                                                   * | 
 |  ****************************************************************************/ | 
 |  | 
 | namespace std_fallback { | 
 | // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar, | 
 | // or that there is no suitable std::log1p function available | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) { | 
 |   EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_USING_STD(log); | 
 |   Scalar x1p = RealScalar(1) + x; | 
 |   Scalar log_1p = log_impl<Scalar>::run(x1p); | 
 |   const bool is_small = numext::equal_strict(x1p, Scalar(1)); | 
 |   const bool is_inf = numext::equal_strict(x1p, log_1p); | 
 |   return (is_small || is_inf) ? x : x * (log_1p / (x1p - RealScalar(1))); | 
 | } | 
 | }  // namespace std_fallback | 
 |  | 
 | template <typename Scalar> | 
 | struct log1p_impl { | 
 |   EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
 |  | 
 |   EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) { | 
 |     EIGEN_USING_STD(log1p); | 
 |     return log1p(x); | 
 |   } | 
 | }; | 
 |  | 
 | // Specialization for complex types that are not supported by std::log1p. | 
 | template <typename RealScalar> | 
 | struct log1p_impl<std::complex<RealScalar>> { | 
 |   EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar) | 
 |  | 
 |   EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run(const std::complex<RealScalar>& x) { | 
 |     return std_fallback::log1p(x); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct log1p_retval { | 
 |   typedef Scalar type; | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of pow                                                  * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename ScalarX, typename ScalarY, | 
 |           bool IsInteger = NumTraits<ScalarX>::IsInteger && NumTraits<ScalarY>::IsInteger> | 
 | struct pow_impl { | 
 |   // typedef Scalar retval; | 
 |   typedef typename ScalarBinaryOpTraits<ScalarX, ScalarY, internal::scalar_pow_op<ScalarX, ScalarY>>::ReturnType | 
 |       result_type; | 
 |   static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y) { | 
 |     EIGEN_USING_STD(pow); | 
 |     return pow(x, y); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename ScalarX, typename ScalarY> | 
 | struct pow_impl<ScalarX, ScalarY, true> { | 
 |   typedef ScalarX result_type; | 
 |   static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y) { | 
 |     ScalarX res(1); | 
 |     eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0); | 
 |     if (y & 1) res *= x; | 
 |     y >>= 1; | 
 |     while (y) { | 
 |       x *= x; | 
 |       if (y & 1) res *= x; | 
 |       y >>= 1; | 
 |     } | 
 |     return res; | 
 |   } | 
 | }; | 
 |  | 
 | enum { meta_floor_log2_terminate, meta_floor_log2_move_up, meta_floor_log2_move_down, meta_floor_log2_bogus }; | 
 |  | 
 | template <unsigned int n, int lower, int upper> | 
 | struct meta_floor_log2_selector { | 
 |   enum { | 
 |     middle = (lower + upper) / 2, | 
 |     value = (upper <= lower + 1)  ? int(meta_floor_log2_terminate) | 
 |             : (n < (1 << middle)) ? int(meta_floor_log2_move_down) | 
 |             : (n == 0)            ? int(meta_floor_log2_bogus) | 
 |                                   : int(meta_floor_log2_move_up) | 
 |   }; | 
 | }; | 
 |  | 
 | template <unsigned int n, int lower = 0, int upper = sizeof(unsigned int) * CHAR_BIT - 1, | 
 |           int selector = meta_floor_log2_selector<n, lower, upper>::value> | 
 | struct meta_floor_log2 {}; | 
 |  | 
 | template <unsigned int n, int lower, int upper> | 
 | struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down> { | 
 |   enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value }; | 
 | }; | 
 |  | 
 | template <unsigned int n, int lower, int upper> | 
 | struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up> { | 
 |   enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value }; | 
 | }; | 
 |  | 
 | template <unsigned int n, int lower, int upper> | 
 | struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate> { | 
 |   enum { value = (n >= ((unsigned int)(1) << (lower + 1))) ? lower + 1 : lower }; | 
 | }; | 
 |  | 
 | template <unsigned int n, int lower, int upper> | 
 | struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus> { | 
 |   // no value, error at compile time | 
 | }; | 
 |  | 
 | template <typename BitsType, typename EnableIf = void> | 
 | struct count_bits_impl { | 
 |   static_assert(std::is_integral<BitsType>::value && std::is_unsigned<BitsType>::value, | 
 |                 "BitsType must be an unsigned integer"); | 
 |   static EIGEN_DEVICE_FUNC inline int clz(BitsType bits) { | 
 |     int n = CHAR_BIT * sizeof(BitsType); | 
 |     int shift = n / 2; | 
 |     while (bits > 0 && shift > 0) { | 
 |       BitsType y = bits >> shift; | 
 |       if (y > 0) { | 
 |         n -= shift; | 
 |         bits = y; | 
 |       } | 
 |       shift /= 2; | 
 |     } | 
 |     if (shift == 0) { | 
 |       --n; | 
 |     } | 
 |     return n; | 
 |   } | 
 |  | 
 |   static EIGEN_DEVICE_FUNC inline int ctz(BitsType bits) { | 
 |     int n = CHAR_BIT * sizeof(BitsType); | 
 |     int shift = n / 2; | 
 |     while (bits > 0 && shift > 0) { | 
 |       BitsType y = bits << shift; | 
 |       if (y > 0) { | 
 |         n -= shift; | 
 |         bits = y; | 
 |       } | 
 |       shift /= 2; | 
 |     } | 
 |     if (shift == 0) { | 
 |       --n; | 
 |     } | 
 |     return n; | 
 |   } | 
 | }; | 
 |  | 
 | // Count leading zeros. | 
 | template <typename BitsType> | 
 | EIGEN_DEVICE_FUNC inline int clz(BitsType bits) { | 
 |   return count_bits_impl<BitsType>::clz(bits); | 
 | } | 
 |  | 
 | // Count trailing zeros. | 
 | template <typename BitsType> | 
 | EIGEN_DEVICE_FUNC inline int ctz(BitsType bits) { | 
 |   return count_bits_impl<BitsType>::ctz(bits); | 
 | } | 
 |  | 
 | #if EIGEN_COMP_GNUC || EIGEN_COMP_CLANG | 
 |  | 
 | template <typename BitsType> | 
 | struct count_bits_impl< | 
 |     BitsType, std::enable_if_t<std::is_integral<BitsType>::value && sizeof(BitsType) <= sizeof(unsigned int)>> { | 
 |   static constexpr int kNumBits = static_cast<int>(sizeof(BitsType) * CHAR_BIT); | 
 |   static EIGEN_DEVICE_FUNC inline int clz(BitsType bits) { | 
 |     static constexpr int kLeadingBitsOffset = (sizeof(unsigned int) - sizeof(BitsType)) * CHAR_BIT; | 
 |     return bits == 0 ? kNumBits : __builtin_clz(static_cast<unsigned int>(bits)) - kLeadingBitsOffset; | 
 |   } | 
 |  | 
 |   static EIGEN_DEVICE_FUNC inline int ctz(BitsType bits) { | 
 |     return bits == 0 ? kNumBits : __builtin_ctz(static_cast<unsigned int>(bits)); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename BitsType> | 
 | struct count_bits_impl<BitsType, | 
 |                        std::enable_if_t<std::is_integral<BitsType>::value && sizeof(unsigned int) < sizeof(BitsType) && | 
 |                                         sizeof(BitsType) <= sizeof(unsigned long)>> { | 
 |   static constexpr int kNumBits = static_cast<int>(sizeof(BitsType) * CHAR_BIT); | 
 |   static EIGEN_DEVICE_FUNC inline int clz(BitsType bits) { | 
 |     static constexpr int kLeadingBitsOffset = (sizeof(unsigned long) - sizeof(BitsType)) * CHAR_BIT; | 
 |     return bits == 0 ? kNumBits : __builtin_clzl(static_cast<unsigned long>(bits)) - kLeadingBitsOffset; | 
 |   } | 
 |  | 
 |   static EIGEN_DEVICE_FUNC inline int ctz(BitsType bits) { | 
 |     return bits == 0 ? kNumBits : __builtin_ctzl(static_cast<unsigned long>(bits)); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename BitsType> | 
 | struct count_bits_impl<BitsType, | 
 |                        std::enable_if_t<std::is_integral<BitsType>::value && sizeof(unsigned long) < sizeof(BitsType) && | 
 |                                         sizeof(BitsType) <= sizeof(unsigned long long)>> { | 
 |   static constexpr int kNumBits = static_cast<int>(sizeof(BitsType) * CHAR_BIT); | 
 |   static EIGEN_DEVICE_FUNC inline int clz(BitsType bits) { | 
 |     static constexpr int kLeadingBitsOffset = (sizeof(unsigned long long) - sizeof(BitsType)) * CHAR_BIT; | 
 |     return bits == 0 ? kNumBits : __builtin_clzll(static_cast<unsigned long long>(bits)) - kLeadingBitsOffset; | 
 |   } | 
 |  | 
 |   static EIGEN_DEVICE_FUNC inline int ctz(BitsType bits) { | 
 |     return bits == 0 ? kNumBits : __builtin_ctzll(static_cast<unsigned long long>(bits)); | 
 |   } | 
 | }; | 
 |  | 
 | #elif EIGEN_COMP_MSVC | 
 |  | 
 | template <typename BitsType> | 
 | struct count_bits_impl< | 
 |     BitsType, std::enable_if_t<std::is_integral<BitsType>::value && sizeof(BitsType) <= sizeof(unsigned long)>> { | 
 |   static constexpr int kNumBits = static_cast<int>(sizeof(BitsType) * CHAR_BIT); | 
 |   static EIGEN_DEVICE_FUNC inline int clz(BitsType bits) { | 
 |     unsigned long out; | 
 |     _BitScanReverse(&out, static_cast<unsigned long>(bits)); | 
 |     return bits == 0 ? kNumBits : (kNumBits - 1) - static_cast<int>(out); | 
 |   } | 
 |  | 
 |   static EIGEN_DEVICE_FUNC inline int ctz(BitsType bits) { | 
 |     unsigned long out; | 
 |     _BitScanForward(&out, static_cast<unsigned long>(bits)); | 
 |     return bits == 0 ? kNumBits : static_cast<int>(out); | 
 |   } | 
 | }; | 
 |  | 
 | #ifdef _WIN64 | 
 |  | 
 | template <typename BitsType> | 
 | struct count_bits_impl<BitsType, | 
 |                        std::enable_if_t<std::is_integral<BitsType>::value && sizeof(unsigned long) < sizeof(BitsType) && | 
 |                                         sizeof(BitsType) <= sizeof(__int64)>> { | 
 |   static constexpr int kNumBits = static_cast<int>(sizeof(BitsType) * CHAR_BIT); | 
 |   static EIGEN_DEVICE_FUNC inline int clz(BitsType bits) { | 
 |     unsigned long out; | 
 |     _BitScanReverse64(&out, static_cast<unsigned __int64>(bits)); | 
 |     return bits == 0 ? kNumBits : (kNumBits - 1) - static_cast<int>(out); | 
 |   } | 
 |  | 
 |   static EIGEN_DEVICE_FUNC inline int ctz(BitsType bits) { | 
 |     unsigned long out; | 
 |     _BitScanForward64(&out, static_cast<unsigned __int64>(bits)); | 
 |     return bits == 0 ? kNumBits : static_cast<int>(out); | 
 |   } | 
 | }; | 
 |  | 
 | #endif  // _WIN64 | 
 |  | 
 | #endif  // EIGEN_COMP_GNUC || EIGEN_COMP_CLANG | 
 |  | 
 | template <typename BitsType> | 
 | struct log_2_impl { | 
 |   static constexpr int kTotalBits = sizeof(BitsType) * CHAR_BIT; | 
 |   static EIGEN_DEVICE_FUNC inline int run_ceil(const BitsType& x) { | 
 |     const int n = kTotalBits - clz(x); | 
 |     bool power_of_two = (x & (x - 1)) == 0; | 
 |     return x == 0 ? 0 : power_of_two ? (n - 1) : n; | 
 |   } | 
 |   static EIGEN_DEVICE_FUNC inline int run_floor(const BitsType& x) { | 
 |     const int n = kTotalBits - clz(x); | 
 |     return x == 0 ? 0 : n - 1; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename BitsType> | 
 | int log2_ceil(const BitsType& x) { | 
 |   return log_2_impl<BitsType>::run_ceil(x); | 
 | } | 
 |  | 
 | template <typename BitsType> | 
 | int log2_floor(const BitsType& x) { | 
 |   return log_2_impl<BitsType>::run_floor(x); | 
 | } | 
 |  | 
 | // Implementation of is* functions | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC std::enable_if_t<!(std::numeric_limits<T>::has_infinity || std::numeric_limits<T>::has_quiet_NaN || | 
 |                                      std::numeric_limits<T>::has_signaling_NaN), | 
 |                                    bool> | 
 | isfinite_impl(const T&) { | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC std::enable_if_t<(std::numeric_limits<T>::has_infinity || std::numeric_limits<T>::has_quiet_NaN || | 
 |                                     std::numeric_limits<T>::has_signaling_NaN) && | 
 |                                        (!NumTraits<T>::IsComplex), | 
 |                                    bool> | 
 | isfinite_impl(const T& x) { | 
 |   EIGEN_USING_STD(isfinite); | 
 |   return isfinite EIGEN_NOT_A_MACRO(x); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC std::enable_if_t<!std::numeric_limits<T>::has_infinity, bool> isinf_impl(const T&) { | 
 |   return false; | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC std::enable_if_t<(std::numeric_limits<T>::has_infinity && !NumTraits<T>::IsComplex), bool> isinf_impl( | 
 |     const T& x) { | 
 |   EIGEN_USING_STD(isinf); | 
 |   return isinf EIGEN_NOT_A_MACRO(x); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC | 
 |     std::enable_if_t<!(std::numeric_limits<T>::has_quiet_NaN || std::numeric_limits<T>::has_signaling_NaN), bool> | 
 |     isnan_impl(const T&) { | 
 |   return false; | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC std::enable_if_t< | 
 |     (std::numeric_limits<T>::has_quiet_NaN || std::numeric_limits<T>::has_signaling_NaN) && (!NumTraits<T>::IsComplex), | 
 |     bool> | 
 | isnan_impl(const T& x) { | 
 |   EIGEN_USING_STD(isnan); | 
 |   return isnan EIGEN_NOT_A_MACRO(x); | 
 | } | 
 |  | 
 | // The following overload are defined at the end of this file | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x); | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x); | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x); | 
 | template <typename T> | 
 | EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS T ptanh_float(const T& a_x); | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of sign                                                 * | 
 |  ****************************************************************************/ | 
 | template <typename Scalar, bool IsComplex = (NumTraits<Scalar>::IsComplex != 0), | 
 |           bool IsInteger = (NumTraits<Scalar>::IsInteger != 0)> | 
 | struct sign_impl { | 
 |   EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& a) { return Scalar((a > Scalar(0)) - (a < Scalar(0))); } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct sign_impl<Scalar, false, false> { | 
 |   EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& a) { | 
 |     return (isnan_impl<Scalar>)(a) ? a : Scalar((a > Scalar(0)) - (a < Scalar(0))); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar, bool IsInteger> | 
 | struct sign_impl<Scalar, true, IsInteger> { | 
 |   EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& a) { | 
 |     using real_type = typename NumTraits<Scalar>::Real; | 
 |     EIGEN_USING_STD(abs); | 
 |     real_type aa = abs(a); | 
 |     if (aa == real_type(0)) return Scalar(0); | 
 |     aa = real_type(1) / aa; | 
 |     return Scalar(a.real() * aa, a.imag() * aa); | 
 |   } | 
 | }; | 
 |  | 
 | // The sign function for bool is the identity. | 
 | template <> | 
 | struct sign_impl<bool, false, true> { | 
 |   EIGEN_DEVICE_FUNC static inline bool run(const bool& a) { return a; } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct sign_retval { | 
 |   typedef Scalar type; | 
 | }; | 
 |  | 
 | // suppress "unary minus operator applied to unsigned type, result still unsigned" warnings on MSVC | 
 | // note: `0 - a` is distinct from `-a` when Scalar is a floating point type and `a` is zero | 
 |  | 
 | template <typename Scalar, bool IsInteger = NumTraits<Scalar>::IsInteger> | 
 | struct negate_impl { | 
 |   static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar run(const Scalar& a) { return -a; } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct negate_impl<Scalar, true> { | 
 |   EIGEN_STATIC_ASSERT((!is_same<Scalar, bool>::value), NEGATE IS NOT DEFINED FOR BOOLEAN TYPES) | 
 |   static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar run(const Scalar& a) { return Scalar(0) - a; } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct negate_retval { | 
 |   typedef Scalar type; | 
 | }; | 
 |  | 
 | template <typename Scalar, bool IsInteger = NumTraits<typename unpacket_traits<Scalar>::type>::IsInteger> | 
 | struct nearest_integer_impl { | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_floor(const Scalar& x) { | 
 |     EIGEN_USING_STD(floor) return floor(x); | 
 |   } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_ceil(const Scalar& x) { | 
 |     EIGEN_USING_STD(ceil) return ceil(x); | 
 |   } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_rint(const Scalar& x) { | 
 |     EIGEN_USING_STD(rint) return rint(x); | 
 |   } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_round(const Scalar& x) { | 
 |     EIGEN_USING_STD(round) return round(x); | 
 |   } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_trunc(const Scalar& x) { | 
 |     EIGEN_USING_STD(trunc) return trunc(x); | 
 |   } | 
 | }; | 
 | template <typename Scalar> | 
 | struct nearest_integer_impl<Scalar, true> { | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_floor(const Scalar& x) { return x; } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_ceil(const Scalar& x) { return x; } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_rint(const Scalar& x) { return x; } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_round(const Scalar& x) { return x; } | 
 |   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar run_trunc(const Scalar& x) { return x; } | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | /**************************************************************************** | 
 |  * Generic math functions                                                    * | 
 |  ****************************************************************************/ | 
 |  | 
 | namespace numext { | 
 |  | 
 | #if (!defined(EIGEN_GPUCC) || defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) { | 
 |   EIGEN_USING_STD(min) | 
 |   return min EIGEN_NOT_A_MACRO(x, y); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) { | 
 |   EIGEN_USING_STD(max) | 
 |   return max EIGEN_NOT_A_MACRO(x, y); | 
 | } | 
 | #else | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) { | 
 |   return y < x ? y : x; | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y) { | 
 |   return fminf(x, y); | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double mini(const double& x, const double& y) { | 
 |   return fmin(x, y); | 
 | } | 
 |  | 
 | #ifndef EIGEN_GPU_COMPILE_PHASE | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE long double mini(const long double& x, const long double& y) { | 
 | #if defined(EIGEN_HIPCC) | 
 |   // no "fminl" on HIP yet | 
 |   return (x < y) ? x : y; | 
 | #else | 
 |   return fminl(x, y); | 
 | #endif | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) { | 
 |   return x < y ? y : x; | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y) { | 
 |   return fmaxf(x, y); | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double maxi(const double& x, const double& y) { | 
 |   return fmax(x, y); | 
 | } | 
 | #ifndef EIGEN_GPU_COMPILE_PHASE | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE long double maxi(const long double& x, const long double& y) { | 
 | #if defined(EIGEN_HIPCC) | 
 |   // no "fmaxl" on HIP yet | 
 |   return (x > y) ? x : y; | 
 | #else | 
 |   return fmaxl(x, y); | 
 | #endif | 
 | } | 
 | #endif | 
 | #endif | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 |  | 
 | #define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \ | 
 |   SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_char)    \ | 
 |   SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_short)   \ | 
 |   SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_int)     \ | 
 |   SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_long) | 
 | #define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \ | 
 |   SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_char)    \ | 
 |   SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_short)   \ | 
 |   SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_int)     \ | 
 |   SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_long) | 
 | #define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \ | 
 |   SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar)     \ | 
 |   SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort)    \ | 
 |   SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uint)      \ | 
 |   SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong) | 
 | #define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \ | 
 |   SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar)     \ | 
 |   SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort)    \ | 
 |   SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uint)      \ | 
 |   SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong) | 
 | #define SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(NAME, FUNC)  \ | 
 |   SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \ | 
 |   SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) | 
 | #define SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(NAME, FUNC)  \ | 
 |   SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \ | 
 |   SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) | 
 | #define SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(NAME, FUNC)     \ | 
 |   SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \ | 
 |   SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_double) | 
 | #define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(NAME, FUNC)     \ | 
 |   SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \ | 
 |   SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_double) | 
 | #define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(NAME, FUNC, RET_TYPE) \ | 
 |   SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_float)       \ | 
 |   SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_double) | 
 |  | 
 | #define SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE)     \ | 
 |   template <>                                                              \ | 
 |   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE& x) { \ | 
 |     return cl::sycl::FUNC(x);                                              \ | 
 |   } | 
 |  | 
 | #define SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, TYPE) SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, TYPE, TYPE) | 
 |  | 
 | #define SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE1, ARG_TYPE2)            \ | 
 |   template <>                                                                                   \ | 
 |   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE1& x, const ARG_TYPE2& y) { \ | 
 |     return cl::sycl::FUNC(x, y);                                                                \ | 
 |   } | 
 |  | 
 | #define SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE) \ | 
 |   SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE, ARG_TYPE) | 
 |  | 
 | #define SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, TYPE) SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, TYPE, TYPE) | 
 |  | 
 | SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(mini, min) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(mini, fmin) | 
 | SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(maxi, max) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(maxi, fmax) | 
 |  | 
 | #endif | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline internal::add_const_on_value_type_t<EIGEN_MATHFUNC_RETVAL(real_ref, Scalar)> real_ref( | 
 |     const Scalar& x) { | 
 |   return internal::real_ref_impl<Scalar>::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline internal::add_const_on_value_type_t<EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar)> imag_ref( | 
 |     const Scalar& x) { | 
 |   return internal::imag_ref_impl<Scalar>::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(sign, Scalar) sign(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(sign, Scalar)::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(negate, Scalar) negate(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(negate, Scalar)::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); | 
 | } | 
 |  | 
 | EIGEN_DEVICE_FUNC inline bool abs2(bool x) { return x; } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T absdiff(const T& x, const T& y) { | 
 |   return x > y ? x - y : y - x; | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float absdiff(const float& x, const float& y) { | 
 |   return fabsf(x - y); | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double absdiff(const double& x, const double& y) { | 
 |   return fabs(x - y); | 
 | } | 
 |  | 
 | // HIP and CUDA do not support long double. | 
 | #ifndef EIGEN_GPU_COMPILE_PHASE | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE long double absdiff(const long double& x, const long double& y) { | 
 |   return fabsl(x - y); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) { | 
 |   return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(hypot, hypot) | 
 | #endif | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log1p, log1p) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float log1p(const float& x) { | 
 |   return ::log1pf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double log1p(const double& x) { | 
 |   return ::log1p(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename ScalarX, typename ScalarY> | 
 | EIGEN_DEVICE_FUNC inline typename internal::pow_impl<ScalarX, ScalarY>::result_type pow(const ScalarX& x, | 
 |                                                                                         const ScalarY& y) { | 
 |   return internal::pow_impl<ScalarX, ScalarY>::run(x, y); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(pow, pow) | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC bool(isnan)(const T& x) { | 
 |   return internal::isnan_impl(x); | 
 | } | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC bool(isinf)(const T& x) { | 
 |   return internal::isinf_impl(x); | 
 | } | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC bool(isfinite)(const T& x) { | 
 |   return internal::isfinite_impl(x); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isnan, isnan, bool) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isinf, isinf, bool) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isfinite, isfinite, bool) | 
 | #endif | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar rint(const Scalar& x) { | 
 |   return internal::nearest_integer_impl<Scalar>::run_rint(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar round(const Scalar& x) { | 
 |   return internal::nearest_integer_impl<Scalar>::run_round(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar(floor)(const Scalar& x) { | 
 |   return internal::nearest_integer_impl<Scalar>::run_floor(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar(ceil)(const Scalar& x) { | 
 |   return internal::nearest_integer_impl<Scalar>::run_ceil(x); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar(trunc)(const Scalar& x) { | 
 |   return internal::nearest_integer_impl<Scalar>::run_trunc(x); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(round, round) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(floor, floor) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(ceil, ceil) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(trunc, trunc) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float floor(const float& x) { | 
 |   return ::floorf(x); | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double floor(const double& x) { | 
 |   return ::floor(x); | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float ceil(const float& x) { | 
 |   return ::ceilf(x); | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double ceil(const double& x) { | 
 |   return ::ceil(x); | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float trunc(const float& x) { | 
 |   return ::truncf(x); | 
 | } | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double trunc(const double& x) { | 
 |   return ::trunc(x); | 
 | } | 
 | #endif | 
 |  | 
 | // Integer division with rounding up. | 
 | // T is assumed to be an integer type with a>=0, and b>0 | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE EIGEN_CONSTEXPR T div_ceil(T a, T b) { | 
 |   using UnsignedT = typename internal::make_unsigned<T>::type; | 
 |   EIGEN_STATIC_ASSERT((NumTraits<T>::IsInteger), THIS FUNCTION IS FOR INTEGER TYPES) | 
 |   eigen_assert(a >= 0); | 
 |   eigen_assert(b > 0); | 
 |   // Note: explicitly declaring a and b as non-negative values allows the compiler to use better optimizations | 
 |   const UnsignedT ua = UnsignedT(a); | 
 |   const UnsignedT ub = UnsignedT(b); | 
 |   // Note: This form is used because it cannot overflow. | 
 |   return ua == 0 ? 0 : (ua - 1) / ub + 1; | 
 | } | 
 |  | 
 | // Integer round down to nearest power of b | 
 | // T is assumed to be an integer type with a>=0, and b>0 | 
 | template <typename T, typename U> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE EIGEN_CONSTEXPR T round_down(T a, U b) { | 
 |   using UnsignedT = typename internal::make_unsigned<T>::type; | 
 |   using UnsignedU = typename internal::make_unsigned<U>::type; | 
 |   EIGEN_STATIC_ASSERT((NumTraits<T>::IsInteger), THIS FUNCTION IS FOR INTEGER TYPES) | 
 |   EIGEN_STATIC_ASSERT((NumTraits<U>::IsInteger), THIS FUNCTION IS FOR INTEGER TYPES) | 
 |   eigen_assert(a >= 0); | 
 |   eigen_assert(b > 0); | 
 |   // Note: explicitly declaring a and b as non-negative values allows the compiler to use better optimizations | 
 |   const UnsignedT ua = UnsignedT(a); | 
 |   const UnsignedU ub = UnsignedU(b); | 
 |   return ub * (ua / ub); | 
 | } | 
 |  | 
 | /** Log base 2 for 32 bits positive integers. | 
 |  * Conveniently returns 0 for x==0. */ | 
 | EIGEN_CONSTEXPR inline int log2(int x) { | 
 |   eigen_assert(x >= 0); | 
 |   unsigned int v(x); | 
 |   constexpr int table[32] = {0, 9,  1,  10, 13, 21, 2,  29, 11, 14, 16, 18, 22, 25, 3, 30, | 
 |                              8, 12, 20, 28, 15, 17, 24, 7,  19, 27, 23, 6,  26, 5,  4, 31}; | 
 |   v |= v >> 1; | 
 |   v |= v >> 2; | 
 |   v |= v >> 4; | 
 |   v |= v >> 8; | 
 |   v |= v >> 16; | 
 |   return table[(v * 0x07C4ACDDU) >> 27]; | 
 | } | 
 |  | 
 | /** \returns the square root of \a x. | 
 |  * | 
 |  * It is essentially equivalent to | 
 |  * \code using std::sqrt; return sqrt(x); \endcode | 
 |  * but slightly faster for float/double and some compilers (e.g., gcc), thanks to | 
 |  * specializations when SSE is enabled. | 
 |  * | 
 |  * It's usage is justified in performance critical functions, like norm/normalize. | 
 |  */ | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE EIGEN_MATHFUNC_RETVAL(sqrt, Scalar) sqrt(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x); | 
 | } | 
 |  | 
 | // Boolean specialization, avoids implicit float to bool conversion (-Wimplicit-conversion-floating-point-to-bool). | 
 | template <> | 
 | EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_DEVICE_FUNC bool sqrt<bool>(const bool& x) { | 
 |   return x; | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sqrt, sqrt) | 
 | #endif | 
 |  | 
 | /** \returns the cube root of \a x. **/ | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cbrt(const T& x) { | 
 |   EIGEN_USING_STD(cbrt); | 
 |   return static_cast<T>(cbrt(x)); | 
 | } | 
 |  | 
 | /** \returns the reciprocal square root of \a x. **/ | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T rsqrt(const T& x) { | 
 |   return internal::rsqrt_impl<T>::run(x); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T log(const T& x) { | 
 |   return internal::log_impl<T>::run(x); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log, log) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float log(const float& x) { | 
 |   return ::logf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double log(const double& x) { | 
 |   return ::log(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
 |     std::enable_if_t<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex, typename NumTraits<T>::Real> | 
 |     abs(const T& x) { | 
 |   EIGEN_USING_STD(abs); | 
 |   return abs(x); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
 |     std::enable_if_t<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex), typename NumTraits<T>::Real> | 
 |     abs(const T& x) { | 
 |   return x; | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(abs, abs) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(abs, fabs) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float abs(const float& x) { | 
 |   return ::fabsf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double abs(const double& x) { | 
 |   return ::fabs(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float abs(const std::complex<float>& x) { | 
 |   return ::hypotf(x.real(), x.imag()); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double abs(const std::complex<double>& x) { | 
 |   return ::hypot(x.real(), x.imag()); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename Scalar, bool IsInteger = NumTraits<Scalar>::IsInteger, bool IsSigned = NumTraits<Scalar>::IsSigned> | 
 | struct signbit_impl; | 
 | template <typename Scalar> | 
 | struct signbit_impl<Scalar, false, true> { | 
 |   static constexpr size_t Size = sizeof(Scalar); | 
 |   static constexpr size_t Shift = (CHAR_BIT * Size) - 1; | 
 |   using intSize_t = typename get_integer_by_size<Size>::signed_type; | 
 |   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static Scalar run(const Scalar& x) { | 
 |     intSize_t a = bit_cast<intSize_t, Scalar>(x); | 
 |     a = a >> Shift; | 
 |     Scalar result = bit_cast<Scalar, intSize_t>(a); | 
 |     return result; | 
 |   } | 
 | }; | 
 | template <typename Scalar> | 
 | struct signbit_impl<Scalar, true, true> { | 
 |   static constexpr size_t Size = sizeof(Scalar); | 
 |   static constexpr size_t Shift = (CHAR_BIT * Size) - 1; | 
 |   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Scalar run(const Scalar& x) { return x >> Shift; } | 
 | }; | 
 | template <typename Scalar> | 
 | struct signbit_impl<Scalar, true, false> { | 
 |   EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Scalar run(const Scalar&) { return Scalar(0); } | 
 | }; | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Scalar signbit(const Scalar& x) { | 
 |   return signbit_impl<Scalar>::run(x); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T exp(const T& x) { | 
 |   EIGEN_USING_STD(exp); | 
 |   return exp(x); | 
 | } | 
 |  | 
 | // MSVC screws up some edge-cases for std::exp(complex). | 
 | #ifdef EIGEN_COMP_MSVC | 
 | template <typename RealScalar> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::complex<RealScalar> exp(const std::complex<RealScalar>& x) { | 
 |   EIGEN_USING_STD(exp); | 
 |   // If z is (x,±∞) (for any finite x), the result is (NaN,NaN) and FE_INVALID is raised. | 
 |   // If z is (x,NaN) (for any finite x), the result is (NaN,NaN) and FE_INVALID may be raised. | 
 |   if ((isfinite)(real_ref(x)) && !(isfinite)(imag_ref(x))) { | 
 |     return std::complex<RealScalar>(NumTraits<RealScalar>::quiet_NaN(), NumTraits<RealScalar>::quiet_NaN()); | 
 |   } | 
 |   // If z is (+∞,±∞), the result is (±∞,NaN) and FE_INVALID is raised (the sign of the real part is unspecified) | 
 |   // If z is (+∞,NaN), the result is (±∞,NaN) (the sign of the real part is unspecified) | 
 |   if ((real_ref(x) == NumTraits<RealScalar>::infinity() && !(isfinite)(imag_ref(x)))) { | 
 |     return std::complex<RealScalar>(NumTraits<RealScalar>::infinity(), NumTraits<RealScalar>::quiet_NaN()); | 
 |   } | 
 |   return exp(x); | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(exp, exp) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float exp(const float& x) { | 
 |   return ::expf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double exp(const double& x) { | 
 |   return ::exp(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::complex<float> exp(const std::complex<float>& x) { | 
 |   float com = ::expf(x.real()); | 
 |   float res_real = com * ::cosf(x.imag()); | 
 |   float res_imag = com * ::sinf(x.imag()); | 
 |   return std::complex<float>(res_real, res_imag); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::complex<double> exp(const std::complex<double>& x) { | 
 |   double com = ::exp(x.real()); | 
 |   double res_real = com * ::cos(x.imag()); | 
 |   double res_imag = com * ::sin(x.imag()); | 
 |   return std::complex<double>(res_real, res_imag); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(expm1, Scalar) expm1(const Scalar& x) { | 
 |   return EIGEN_MATHFUNC_IMPL(expm1, Scalar)::run(x); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(expm1, expm1) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float expm1(const float& x) { | 
 |   return ::expm1f(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double expm1(const double& x) { | 
 |   return ::expm1(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cos(const T& x) { | 
 |   EIGEN_USING_STD(cos); | 
 |   return cos(x); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cos, cos) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float cos(const float& x) { | 
 |   return ::cosf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double cos(const double& x) { | 
 |   return ::cos(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sin(const T& x) { | 
 |   EIGEN_USING_STD(sin); | 
 |   return sin(x); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sin, sin) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sin(const float& x) { | 
 |   return ::sinf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double sin(const double& x) { | 
 |   return ::sin(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tan(const T& x) { | 
 |   EIGEN_USING_STD(tan); | 
 |   return tan(x); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tan, tan) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float tan(const float& x) { | 
 |   return ::tanf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double tan(const double& x) { | 
 |   return ::tan(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T acos(const T& x) { | 
 |   EIGEN_USING_STD(acos); | 
 |   return acos(x); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T acosh(const T& x) { | 
 |   EIGEN_USING_STD(acosh); | 
 |   return static_cast<T>(acosh(x)); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acos, acos) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acosh, acosh) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float acos(const float& x) { | 
 |   return ::acosf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double acos(const double& x) { | 
 |   return ::acos(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T asin(const T& x) { | 
 |   EIGEN_USING_STD(asin); | 
 |   return asin(x); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T asinh(const T& x) { | 
 |   EIGEN_USING_STD(asinh); | 
 |   return static_cast<T>(asinh(x)); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asin, asin) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asinh, asinh) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float asin(const float& x) { | 
 |   return ::asinf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double asin(const double& x) { | 
 |   return ::asin(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atan(const T& x) { | 
 |   EIGEN_USING_STD(atan); | 
 |   return static_cast<T>(atan(x)); | 
 | } | 
 |  | 
 | template <typename T, std::enable_if_t<!NumTraits<T>::IsComplex, int> = 0> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atan2(const T& y, const T& x) { | 
 |   EIGEN_USING_STD(atan2); | 
 |   return static_cast<T>(atan2(y, x)); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atanh(const T& x) { | 
 |   EIGEN_USING_STD(atanh); | 
 |   return static_cast<T>(atanh(x)); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atan, atan) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atanh, atanh) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float atan(const float& x) { | 
 |   return ::atanf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double atan(const double& x) { | 
 |   return ::atan(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cosh(const T& x) { | 
 |   EIGEN_USING_STD(cosh); | 
 |   return static_cast<T>(cosh(x)); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cosh, cosh) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float cosh(const float& x) { | 
 |   return ::coshf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double cosh(const double& x) { | 
 |   return ::cosh(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sinh(const T& x) { | 
 |   EIGEN_USING_STD(sinh); | 
 |   return static_cast<T>(sinh(x)); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sinh, sinh) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sinh(const float& x) { | 
 |   return ::sinhf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double sinh(const double& x) { | 
 |   return ::sinh(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tanh(const T& x) { | 
 |   EIGEN_USING_STD(tanh); | 
 |   return tanh(x); | 
 | } | 
 |  | 
 | #if (!defined(EIGEN_GPUCC)) && EIGEN_FAST_MATH && !defined(SYCL_DEVICE_ONLY) | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float tanh(float x) { return internal::ptanh_float(x); } | 
 | #endif | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tanh, tanh) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float tanh(const float& x) { | 
 |   return ::tanhf(x); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double tanh(const double& x) { | 
 |   return ::tanh(x); | 
 | } | 
 | #endif | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T fmod(const T& a, const T& b) { | 
 |   EIGEN_USING_STD(fmod); | 
 |   return fmod(a, b); | 
 | } | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(fmod, fmod) | 
 | #endif | 
 |  | 
 | #if defined(EIGEN_GPUCC) | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float fmod(const float& a, const float& b) { | 
 |   return ::fmodf(a, b); | 
 | } | 
 |  | 
 | template <> | 
 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double fmod(const double& a, const double& b) { | 
 |   return ::fmod(a, b); | 
 | } | 
 | #endif | 
 |  | 
 | #if defined(SYCL_DEVICE_ONLY) | 
 | #undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY | 
 | #undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY | 
 | #undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY | 
 | #undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY | 
 | #undef SYCL_SPECIALIZE_INTEGER_TYPES_BINARY | 
 | #undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY | 
 | #undef SYCL_SPECIALIZE_FLOATING_TYPES_BINARY | 
 | #undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY | 
 | #undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE | 
 | #undef SYCL_SPECIALIZE_GEN_UNARY_FUNC | 
 | #undef SYCL_SPECIALIZE_UNARY_FUNC | 
 | #undef SYCL_SPECIALIZE_GEN1_BINARY_FUNC | 
 | #undef SYCL_SPECIALIZE_GEN2_BINARY_FUNC | 
 | #undef SYCL_SPECIALIZE_BINARY_FUNC | 
 | #endif | 
 |  | 
 | template <typename Scalar, typename Enable = std::enable_if_t<std::is_integral<Scalar>::value>> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar logical_shift_left(const Scalar& a, int n) { | 
 |   return a << n; | 
 | } | 
 |  | 
 | template <typename Scalar, typename Enable = std::enable_if_t<std::is_integral<Scalar>::value>> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar logical_shift_right(const Scalar& a, int n) { | 
 |   using UnsignedScalar = typename numext::get_integer_by_size<sizeof(Scalar)>::unsigned_type; | 
 |   return bit_cast<Scalar, UnsignedScalar>(bit_cast<UnsignedScalar, Scalar>(a) >> n); | 
 | } | 
 |  | 
 | template <typename Scalar, typename Enable = std::enable_if_t<std::is_integral<Scalar>::value>> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar arithmetic_shift_right(const Scalar& a, int n) { | 
 |   using SignedScalar = typename numext::get_integer_by_size<sizeof(Scalar)>::signed_type; | 
 |   return bit_cast<Scalar, SignedScalar>(bit_cast<SignedScalar, Scalar>(a) >> n); | 
 | } | 
 |  | 
 | }  // end namespace numext | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x) { | 
 |   return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x)); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x) { | 
 |   return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x)); | 
 | } | 
 |  | 
 | template <typename T> | 
 | EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x) { | 
 |   return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x)); | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 |  * Implementation of fuzzy comparisons                                       * | 
 |  ****************************************************************************/ | 
 |  | 
 | template <typename Scalar, bool IsComplex, bool IsInteger> | 
 | struct scalar_fuzzy_default_impl {}; | 
 |  | 
 | template <typename Scalar> | 
 | struct scalar_fuzzy_default_impl<Scalar, false, false> { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   template <typename OtherScalar> | 
 |   EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, | 
 |                                                          const RealScalar& prec) { | 
 |     return numext::abs(x) <= numext::abs(y) * prec; | 
 |   } | 
 |   EIGEN_DEVICE_FUNC static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) { | 
 |     return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec; | 
 |   } | 
 |   EIGEN_DEVICE_FUNC static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) { | 
 |     return x <= y || isApprox(x, y, prec); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct scalar_fuzzy_default_impl<Scalar, false, true> { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   template <typename OtherScalar> | 
 |   EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) { | 
 |     return x == Scalar(0); | 
 |   } | 
 |   EIGEN_DEVICE_FUNC static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) { return x == y; } | 
 |   EIGEN_DEVICE_FUNC static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) { | 
 |     return x <= y; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct scalar_fuzzy_default_impl<Scalar, true, false> { | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   template <typename OtherScalar> | 
 |   EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, | 
 |                                                          const RealScalar& prec) { | 
 |     return numext::abs2(x) <= numext::abs2(y) * prec * prec; | 
 |   } | 
 |   EIGEN_DEVICE_FUNC static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) { | 
 |     return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar> | 
 | struct scalar_fuzzy_impl | 
 |     : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; | 
 |  | 
 | template <typename Scalar, typename OtherScalar> | 
 | EIGEN_DEVICE_FUNC inline bool isMuchSmallerThan( | 
 |     const Scalar& x, const OtherScalar& y, | 
 |     const typename NumTraits<Scalar>::Real& precision = NumTraits<Scalar>::dummy_precision()) { | 
 |   return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline bool isApprox( | 
 |     const Scalar& x, const Scalar& y, | 
 |     const typename NumTraits<Scalar>::Real& precision = NumTraits<Scalar>::dummy_precision()) { | 
 |   return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC inline bool isApproxOrLessThan( | 
 |     const Scalar& x, const Scalar& y, | 
 |     const typename NumTraits<Scalar>::Real& precision = NumTraits<Scalar>::dummy_precision()) { | 
 |   return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision); | 
 | } | 
 |  | 
 | /****************************************** | 
 | ***  The special case of the  bool type *** | 
 | ******************************************/ | 
 |  | 
 | template <> | 
 | struct scalar_fuzzy_impl<bool> { | 
 |   typedef bool RealScalar; | 
 |  | 
 |   template <typename OtherScalar> | 
 |   EIGEN_DEVICE_FUNC static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) { | 
 |     return !x; | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC static inline bool isApprox(bool x, bool y, bool) { return x == y; } | 
 |  | 
 |   EIGEN_DEVICE_FUNC static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) { | 
 |     return (!x) || y; | 
 |   } | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | // Default implementations that rely on other numext implementations | 
 | namespace internal { | 
 |  | 
 | // Specialization for complex types that are not supported by std::expm1. | 
 | template <typename RealScalar> | 
 | struct expm1_impl<std::complex<RealScalar>> { | 
 |   EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar) | 
 |  | 
 |   EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run(const std::complex<RealScalar>& x) { | 
 |     RealScalar xr = x.real(); | 
 |     RealScalar xi = x.imag(); | 
 |     // expm1(z) = exp(z) - 1 | 
 |     //          = exp(x +  i * y) - 1 | 
 |     //          = exp(x) * (cos(y) + i * sin(y)) - 1 | 
 |     //          = exp(x) * cos(y) - 1 + i * exp(x) * sin(y) | 
 |     // Imag(expm1(z)) = exp(x) * sin(y) | 
 |     // Real(expm1(z)) = exp(x) * cos(y) - 1 | 
 |     //          = exp(x) * cos(y) - 1. | 
 |     //          = expm1(x) + exp(x) * (cos(y) - 1) | 
 |     //          = expm1(x) + exp(x) * (2 * sin(y / 2) ** 2) | 
 |     RealScalar erm1 = numext::expm1<RealScalar>(xr); | 
 |     RealScalar er = erm1 + RealScalar(1.); | 
 |     RealScalar sin2 = numext::sin(xi / RealScalar(2.)); | 
 |     sin2 = sin2 * sin2; | 
 |     RealScalar s = numext::sin(xi); | 
 |     RealScalar real_part = erm1 - RealScalar(2.) * er * sin2; | 
 |     return std::complex<RealScalar>(real_part, er * s); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct rsqrt_impl { | 
 |   EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE T run(const T& x) { return T(1) / numext::sqrt(x); } | 
 | }; | 
 |  | 
 | #if defined(EIGEN_GPU_COMPILE_PHASE) | 
 | template <typename T> | 
 | struct conj_impl<std::complex<T>, true> { | 
 |   EIGEN_DEVICE_FUNC static inline std::complex<T> run(const std::complex<T>& x) { | 
 |     return std::complex<T>(numext::real(x), -numext::imag(x)); | 
 |   } | 
 | }; | 
 | #endif | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_MATHFUNCTIONS_H |