| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Claire Maurice | 
 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_COMPLEX_SCHUR_H | 
 | #define EIGEN_COMPLEX_SCHUR_H | 
 |  | 
 | #include "./HessenbergDecomposition.h" | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 | template <typename MatrixType, bool IsComplex> | 
 | struct complex_schur_reduce_to_hessenberg; | 
 | } | 
 |  | 
 | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
 |  * | 
 |  * | 
 |  * \class ComplexSchur | 
 |  * | 
 |  * \brief Performs a complex Schur decomposition of a real or complex square matrix | 
 |  * | 
 |  * \tparam MatrixType_ the type of the matrix of which we are | 
 |  * computing the Schur decomposition; this is expected to be an | 
 |  * instantiation of the Matrix class template. | 
 |  * | 
 |  * Given a real or complex square matrix A, this class computes the | 
 |  * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary | 
 |  * complex matrix, and T is a complex upper triangular matrix.  The | 
 |  * diagonal of the matrix T corresponds to the eigenvalues of the | 
 |  * matrix A. | 
 |  * | 
 |  * Call the function compute() to compute the Schur decomposition of | 
 |  * a given matrix. Alternatively, you can use the | 
 |  * ComplexSchur(const MatrixType&, bool) constructor which computes | 
 |  * the Schur decomposition at construction time. Once the | 
 |  * decomposition is computed, you can use the matrixU() and matrixT() | 
 |  * functions to retrieve the matrices U and V in the decomposition. | 
 |  * | 
 |  * \note This code is inspired from Jampack | 
 |  * | 
 |  * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver | 
 |  */ | 
 | template <typename MatrixType_> | 
 | class ComplexSchur { | 
 |  public: | 
 |   typedef MatrixType_ MatrixType; | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |     Options = internal::traits<MatrixType>::Options, | 
 |     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |   }; | 
 |  | 
 |   /** \brief Scalar type for matrices of type \p MatrixType_. */ | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Eigen::Index Index;  ///< \deprecated since Eigen 3.3 | 
 |  | 
 |   /** \brief Complex scalar type for \p MatrixType_. | 
 |    * | 
 |    * This is \c std::complex<Scalar> if #Scalar is real (e.g., | 
 |    * \c float or \c double) and just \c Scalar if #Scalar is | 
 |    * complex. | 
 |    */ | 
 |   typedef std::complex<RealScalar> ComplexScalar; | 
 |  | 
 |   /** \brief Type for the matrices in the Schur decomposition. | 
 |    * | 
 |    * This is a square matrix with entries of type #ComplexScalar. | 
 |    * The size is the same as the size of \p MatrixType_. | 
 |    */ | 
 |   typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, | 
 |                  MaxColsAtCompileTime> | 
 |       ComplexMatrixType; | 
 |  | 
 |   /** \brief Default constructor. | 
 |    * | 
 |    * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed. | 
 |    * | 
 |    * The default constructor is useful in cases in which the user | 
 |    * intends to perform decompositions via compute().  The \p size | 
 |    * parameter is only used as a hint. It is not an error to give a | 
 |    * wrong \p size, but it may impair performance. | 
 |    * | 
 |    * \sa compute() for an example. | 
 |    */ | 
 |   explicit ComplexSchur(Index size = RowsAtCompileTime == Dynamic ? 1 : RowsAtCompileTime) | 
 |       : m_matT(size, size), | 
 |         m_matU(size, size), | 
 |         m_hess(size), | 
 |         m_isInitialized(false), | 
 |         m_matUisUptodate(false), | 
 |         m_maxIters(-1) {} | 
 |  | 
 |   /** \brief Constructor; computes Schur decomposition of given matrix. | 
 |    * | 
 |    * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed. | 
 |    * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
 |    * | 
 |    * This constructor calls compute() to compute the Schur decomposition. | 
 |    * | 
 |    * \sa matrixT() and matrixU() for examples. | 
 |    */ | 
 |   template <typename InputType> | 
 |   explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true) | 
 |       : m_matT(matrix.rows(), matrix.cols()), | 
 |         m_matU(matrix.rows(), matrix.cols()), | 
 |         m_hess(matrix.rows()), | 
 |         m_isInitialized(false), | 
 |         m_matUisUptodate(false), | 
 |         m_maxIters(-1) { | 
 |     compute(matrix.derived(), computeU); | 
 |   } | 
 |  | 
 |   /** \brief Returns the unitary matrix in the Schur decomposition. | 
 |    * | 
 |    * \returns A const reference to the matrix U. | 
 |    * | 
 |    * It is assumed that either the constructor | 
 |    * ComplexSchur(const MatrixType& matrix, bool computeU) or the | 
 |    * member function compute(const MatrixType& matrix, bool computeU) | 
 |    * has been called before to compute the Schur decomposition of a | 
 |    * matrix, and that \p computeU was set to true (the default | 
 |    * value). | 
 |    * | 
 |    * Example: \include ComplexSchur_matrixU.cpp | 
 |    * Output: \verbinclude ComplexSchur_matrixU.out | 
 |    */ | 
 |   const ComplexMatrixType& matrixU() const { | 
 |     eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); | 
 |     eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition."); | 
 |     return m_matU; | 
 |   } | 
 |  | 
 |   /** \brief Returns the triangular matrix in the Schur decomposition. | 
 |    * | 
 |    * \returns A const reference to the matrix T. | 
 |    * | 
 |    * It is assumed that either the constructor | 
 |    * ComplexSchur(const MatrixType& matrix, bool computeU) or the | 
 |    * member function compute(const MatrixType& matrix, bool computeU) | 
 |    * has been called before to compute the Schur decomposition of a | 
 |    * matrix. | 
 |    * | 
 |    * Note that this function returns a plain square matrix. If you want to reference | 
 |    * only the upper triangular part, use: | 
 |    * \code schur.matrixT().triangularView<Upper>() \endcode | 
 |    * | 
 |    * Example: \include ComplexSchur_matrixT.cpp | 
 |    * Output: \verbinclude ComplexSchur_matrixT.out | 
 |    */ | 
 |   const ComplexMatrixType& matrixT() const { | 
 |     eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); | 
 |     return m_matT; | 
 |   } | 
 |  | 
 |   /** \brief Computes Schur decomposition of given matrix. | 
 |     * | 
 |     * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed. | 
 |     * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
 |  | 
 |     * \returns    Reference to \c *this | 
 |     * | 
 |     * The Schur decomposition is computed by first reducing the | 
 |     * matrix to Hessenberg form using the class | 
 |     * HessenbergDecomposition. The Hessenberg matrix is then reduced | 
 |     * to triangular form by performing QR iterations with a single | 
 |     * shift. The cost of computing the Schur decomposition depends | 
 |     * on the number of iterations; as a rough guide, it may be taken | 
 |     * on the number of iterations; as a rough guide, it may be taken | 
 |     * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops | 
 |     * if \a computeU is false. | 
 |     * | 
 |     * Example: \include ComplexSchur_compute.cpp | 
 |     * Output: \verbinclude ComplexSchur_compute.out | 
 |     * | 
 |     * \sa compute(const MatrixType&, bool, Index) | 
 |     */ | 
 |   template <typename InputType> | 
 |   ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true); | 
 |  | 
 |   /** \brief Compute Schur decomposition from a given Hessenberg matrix | 
 |    *  \param[in] matrixH Matrix in Hessenberg form H | 
 |    *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T | 
 |    *  \param computeU Computes the matriX U of the Schur vectors | 
 |    * \return Reference to \c *this | 
 |    * | 
 |    *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH | 
 |    *  using either the class HessenbergDecomposition or another mean. | 
 |    *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H | 
 |    *  When computeU is true, this routine computes the matrix U such that | 
 |    *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix | 
 |    * | 
 |    * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix | 
 |    * is not available, the user should give an identity matrix (Q.setIdentity()) | 
 |    * | 
 |    * \sa compute(const MatrixType&, bool) | 
 |    */ | 
 |   template <typename HessMatrixType, typename OrthMatrixType> | 
 |   ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, | 
 |                                       bool computeU = true); | 
 |  | 
 |   /** \brief Reports whether previous computation was successful. | 
 |    * | 
 |    * \returns \c Success if computation was successful, \c NoConvergence otherwise. | 
 |    */ | 
 |   ComputationInfo info() const { | 
 |     eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 |   /** \brief Sets the maximum number of iterations allowed. | 
 |    * | 
 |    * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size | 
 |    * of the matrix. | 
 |    */ | 
 |   ComplexSchur& setMaxIterations(Index maxIters) { | 
 |     m_maxIters = maxIters; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /** \brief Returns the maximum number of iterations. */ | 
 |   Index getMaxIterations() { return m_maxIters; } | 
 |  | 
 |   /** \brief Maximum number of iterations per row. | 
 |    * | 
 |    * If not otherwise specified, the maximum number of iterations is this number times the size of the | 
 |    * matrix. It is currently set to 30. | 
 |    */ | 
 |   static const int m_maxIterationsPerRow = 30; | 
 |  | 
 |  protected: | 
 |   ComplexMatrixType m_matT, m_matU; | 
 |   HessenbergDecomposition<MatrixType> m_hess; | 
 |   ComputationInfo m_info; | 
 |   bool m_isInitialized; | 
 |   bool m_matUisUptodate; | 
 |   Index m_maxIters; | 
 |  | 
 |  private: | 
 |   bool subdiagonalEntryIsNeglegible(Index i); | 
 |   ComplexScalar computeShift(Index iu, Index iter); | 
 |   void reduceToTriangularForm(bool computeU); | 
 |   friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>; | 
 | }; | 
 |  | 
 | /** If m_matT(i+1,i) is negligible in floating point arithmetic | 
 |  * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and | 
 |  * return true, else return false. */ | 
 | template <typename MatrixType> | 
 | inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i) { | 
 |   RealScalar d = numext::norm1(m_matT.coeff(i, i)) + numext::norm1(m_matT.coeff(i + 1, i + 1)); | 
 |   RealScalar sd = numext::norm1(m_matT.coeff(i + 1, i)); | 
 |   if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon())) { | 
 |     m_matT.coeffRef(i + 1, i) = ComplexScalar(0); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /** Compute the shift in the current QR iteration. */ | 
 | template <typename MatrixType> | 
 | typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter) { | 
 |   using std::abs; | 
 |   if ((iter == 10 || iter == 20) && iu > 1) { | 
 |     // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f | 
 |     return abs(numext::real(m_matT.coeff(iu, iu - 1))) + abs(numext::real(m_matT.coeff(iu - 1, iu - 2))); | 
 |   } | 
 |  | 
 |   // compute the shift as one of the eigenvalues of t, the 2x2 | 
 |   // diagonal block on the bottom of the active submatrix | 
 |   Matrix<ComplexScalar, 2, 2> t = m_matT.template block<2, 2>(iu - 1, iu - 1); | 
 |   RealScalar normt = t.cwiseAbs().sum(); | 
 |   t /= normt;  // the normalization by sf is to avoid under/overflow | 
 |  | 
 |   ComplexScalar b = t.coeff(0, 1) * t.coeff(1, 0); | 
 |   ComplexScalar c = t.coeff(0, 0) - t.coeff(1, 1); | 
 |   ComplexScalar disc = sqrt(c * c + RealScalar(4) * b); | 
 |   ComplexScalar det = t.coeff(0, 0) * t.coeff(1, 1) - b; | 
 |   ComplexScalar trace = t.coeff(0, 0) + t.coeff(1, 1); | 
 |   ComplexScalar eival1 = (trace + disc) / RealScalar(2); | 
 |   ComplexScalar eival2 = (trace - disc) / RealScalar(2); | 
 |   RealScalar eival1_norm = numext::norm1(eival1); | 
 |   RealScalar eival2_norm = numext::norm1(eival2); | 
 |   // A division by zero can only occur if eival1==eival2==0. | 
 |   // In this case, det==0, and all we have to do is checking that eival2_norm!=0 | 
 |   if (eival1_norm > eival2_norm) | 
 |     eival2 = det / eival1; | 
 |   else if (!numext::is_exactly_zero(eival2_norm)) | 
 |     eival1 = det / eival2; | 
 |  | 
 |   // choose the eigenvalue closest to the bottom entry of the diagonal | 
 |   if (numext::norm1(eival1 - t.coeff(1, 1)) < numext::norm1(eival2 - t.coeff(1, 1))) | 
 |     return normt * eival1; | 
 |   else | 
 |     return normt * eival2; | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | template <typename InputType> | 
 | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) { | 
 |   m_matUisUptodate = false; | 
 |   eigen_assert(matrix.cols() == matrix.rows()); | 
 |  | 
 |   if (matrix.cols() == 1) { | 
 |     m_matT = matrix.derived().template cast<ComplexScalar>(); | 
 |     if (computeU) m_matU = ComplexMatrixType::Identity(1, 1); | 
 |     m_info = Success; | 
 |     m_isInitialized = true; | 
 |     m_matUisUptodate = computeU; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), | 
 |                                                                                               computeU); | 
 |   computeFromHessenberg(m_matT, m_matU, computeU); | 
 |   return *this; | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | template <typename HessMatrixType, typename OrthMatrixType> | 
 | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, | 
 |                                                                           const OrthMatrixType& matrixQ, | 
 |                                                                           bool computeU) { | 
 |   m_matT = matrixH; | 
 |   if (computeU) m_matU = matrixQ; | 
 |   reduceToTriangularForm(computeU); | 
 |   return *this; | 
 | } | 
 | namespace internal { | 
 |  | 
 | /* Reduce given matrix to Hessenberg form */ | 
 | template <typename MatrixType, bool IsComplex> | 
 | struct complex_schur_reduce_to_hessenberg { | 
 |   // this is the implementation for the case IsComplex = true | 
 |   static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) { | 
 |     _this.m_hess.compute(matrix); | 
 |     _this.m_matT = _this.m_hess.matrixH(); | 
 |     if (computeU) _this.m_matU = _this.m_hess.matrixQ(); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename MatrixType> | 
 | struct complex_schur_reduce_to_hessenberg<MatrixType, false> { | 
 |   static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) { | 
 |     typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; | 
 |  | 
 |     // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar | 
 |     _this.m_hess.compute(matrix); | 
 |     _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>(); | 
 |     if (computeU) { | 
 |       // This may cause an allocation which seems to be avoidable | 
 |       MatrixType Q = _this.m_hess.matrixQ(); | 
 |       _this.m_matU = Q.template cast<ComplexScalar>(); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. | 
 | template <typename MatrixType> | 
 | void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU) { | 
 |   Index maxIters = m_maxIters; | 
 |   if (maxIters == -1) maxIters = m_maxIterationsPerRow * m_matT.rows(); | 
 |  | 
 |   // The matrix m_matT is divided in three parts. | 
 |   // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. | 
 |   // Rows il,...,iu is the part we are working on (the active submatrix). | 
 |   // Rows iu+1,...,end are already brought in triangular form. | 
 |   Index iu = m_matT.cols() - 1; | 
 |   Index il; | 
 |   Index iter = 0;       // number of iterations we are working on the (iu,iu) element | 
 |   Index totalIter = 0;  // number of iterations for whole matrix | 
 |  | 
 |   while (true) { | 
 |     // find iu, the bottom row of the active submatrix | 
 |     while (iu > 0) { | 
 |       if (!subdiagonalEntryIsNeglegible(iu - 1)) break; | 
 |       iter = 0; | 
 |       --iu; | 
 |     } | 
 |  | 
 |     // if iu is zero then we are done; the whole matrix is triangularized | 
 |     if (iu == 0) break; | 
 |  | 
 |     // if we spent too many iterations, we give up | 
 |     iter++; | 
 |     totalIter++; | 
 |     if (totalIter > maxIters) break; | 
 |  | 
 |     // find il, the top row of the active submatrix | 
 |     il = iu - 1; | 
 |     while (il > 0 && !subdiagonalEntryIsNeglegible(il - 1)) { | 
 |       --il; | 
 |     } | 
 |  | 
 |     /* perform the QR step using Givens rotations. The first rotation | 
 |        creates a bulge; the (il+2,il) element becomes nonzero. This | 
 |        bulge is chased down to the bottom of the active submatrix. */ | 
 |  | 
 |     ComplexScalar shift = computeShift(iu, iter); | 
 |     JacobiRotation<ComplexScalar> rot; | 
 |     rot.makeGivens(m_matT.coeff(il, il) - shift, m_matT.coeff(il + 1, il)); | 
 |     m_matT.rightCols(m_matT.cols() - il).applyOnTheLeft(il, il + 1, rot.adjoint()); | 
 |     m_matT.topRows((std::min)(il + 2, iu) + 1).applyOnTheRight(il, il + 1, rot); | 
 |     if (computeU) m_matU.applyOnTheRight(il, il + 1, rot); | 
 |  | 
 |     for (Index i = il + 1; i < iu; i++) { | 
 |       rot.makeGivens(m_matT.coeffRef(i, i - 1), m_matT.coeffRef(i + 1, i - 1), &m_matT.coeffRef(i, i - 1)); | 
 |       m_matT.coeffRef(i + 1, i - 1) = ComplexScalar(0); | 
 |       m_matT.rightCols(m_matT.cols() - i).applyOnTheLeft(i, i + 1, rot.adjoint()); | 
 |       m_matT.topRows((std::min)(i + 2, iu) + 1).applyOnTheRight(i, i + 1, rot); | 
 |       if (computeU) m_matU.applyOnTheRight(i, i + 1, rot); | 
 |     } | 
 |   } | 
 |  | 
 |   if (totalIter <= maxIters) | 
 |     m_info = Success; | 
 |   else | 
 |     m_info = NoConvergence; | 
 |  | 
 |   m_isInitialized = true; | 
 |   m_matUisUptodate = computeU; | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_COMPLEX_SCHUR_H |