|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_INVERSE_IMPL_H | 
|  | #define EIGEN_INVERSE_IMPL_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /********************************** | 
|  | *** General case implementation *** | 
|  | **********************************/ | 
|  |  | 
|  | template <typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> | 
|  | struct compute_inverse { | 
|  | EIGEN_DEVICE_FUNC static inline void run(const MatrixType& matrix, ResultType& result) { | 
|  | result = matrix.partialPivLu().inverse(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> | 
|  | struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ | 
|  | }; | 
|  |  | 
|  | /**************************** | 
|  | *** Size 1 implementation *** | 
|  | ****************************/ | 
|  |  | 
|  | template <typename MatrixType, typename ResultType> | 
|  | struct compute_inverse<MatrixType, ResultType, 1> { | 
|  | EIGEN_DEVICE_FUNC static inline void run(const MatrixType& matrix, ResultType& result) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | internal::evaluator<MatrixType> matrixEval(matrix); | 
|  | result.coeffRef(0, 0) = Scalar(1) / matrixEval.coeff(0, 0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType, typename ResultType> | 
|  | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1> { | 
|  | EIGEN_DEVICE_FUNC static inline void run(const MatrixType& matrix, | 
|  | const typename MatrixType::RealScalar& absDeterminantThreshold, | 
|  | ResultType& result, typename ResultType::Scalar& determinant, | 
|  | bool& invertible) { | 
|  | using std::abs; | 
|  | determinant = matrix.coeff(0, 0); | 
|  | invertible = abs(determinant) > absDeterminantThreshold; | 
|  | if (invertible) result.coeffRef(0, 0) = typename ResultType::Scalar(1) / determinant; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /**************************** | 
|  | *** Size 2 implementation *** | 
|  | ****************************/ | 
|  |  | 
|  | template <typename MatrixType, typename ResultType> | 
|  | EIGEN_DEVICE_FUNC inline void compute_inverse_size2_helper(const MatrixType& matrix, | 
|  | const typename ResultType::Scalar& invdet, | 
|  | ResultType& result) { | 
|  | typename ResultType::Scalar temp = matrix.coeff(0, 0); | 
|  | result.coeffRef(0, 0) = matrix.coeff(1, 1) * invdet; | 
|  | result.coeffRef(1, 0) = -matrix.coeff(1, 0) * invdet; | 
|  | result.coeffRef(0, 1) = -matrix.coeff(0, 1) * invdet; | 
|  | result.coeffRef(1, 1) = temp * invdet; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, typename ResultType> | 
|  | struct compute_inverse<MatrixType, ResultType, 2> { | 
|  | EIGEN_DEVICE_FUNC static inline void run(const MatrixType& matrix, ResultType& result) { | 
|  | typedef typename ResultType::Scalar Scalar; | 
|  | const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); | 
|  | compute_inverse_size2_helper(matrix, invdet, result); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType, typename ResultType> | 
|  | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2> { | 
|  | EIGEN_DEVICE_FUNC static inline void run(const MatrixType& matrix, | 
|  | const typename MatrixType::RealScalar& absDeterminantThreshold, | 
|  | ResultType& inverse, typename ResultType::Scalar& determinant, | 
|  | bool& invertible) { | 
|  | using std::abs; | 
|  | typedef typename ResultType::Scalar Scalar; | 
|  | determinant = matrix.determinant(); | 
|  | invertible = abs(determinant) > absDeterminantThreshold; | 
|  | if (!invertible) return; | 
|  | const Scalar invdet = Scalar(1) / determinant; | 
|  | compute_inverse_size2_helper(matrix, invdet, inverse); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /**************************** | 
|  | *** Size 3 implementation *** | 
|  | ****************************/ | 
|  |  | 
|  | template <typename MatrixType, int i, int j> | 
|  | EIGEN_DEVICE_FUNC inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m) { | 
|  | enum { i1 = (i + 1) % 3, i2 = (i + 2) % 3, j1 = (j + 1) % 3, j2 = (j + 2) % 3 }; | 
|  | return m.coeff(i1, j1) * m.coeff(i2, j2) - m.coeff(i1, j2) * m.coeff(i2, j1); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, typename ResultType> | 
|  | EIGEN_DEVICE_FUNC inline void compute_inverse_size3_helper( | 
|  | const MatrixType& matrix, const typename ResultType::Scalar& invdet, | 
|  | const Matrix<typename ResultType::Scalar, 3, 1>& cofactors_col0, ResultType& result) { | 
|  | // Compute cofactors in a way that avoids aliasing issues. | 
|  | typedef typename ResultType::Scalar Scalar; | 
|  | const Scalar c01 = cofactor_3x3<MatrixType, 0, 1>(matrix) * invdet; | 
|  | const Scalar c11 = cofactor_3x3<MatrixType, 1, 1>(matrix) * invdet; | 
|  | const Scalar c02 = cofactor_3x3<MatrixType, 0, 2>(matrix) * invdet; | 
|  | result.coeffRef(1, 2) = cofactor_3x3<MatrixType, 2, 1>(matrix) * invdet; | 
|  | result.coeffRef(2, 1) = cofactor_3x3<MatrixType, 1, 2>(matrix) * invdet; | 
|  | result.coeffRef(2, 2) = cofactor_3x3<MatrixType, 2, 2>(matrix) * invdet; | 
|  | result.coeffRef(1, 0) = c01; | 
|  | result.coeffRef(1, 1) = c11; | 
|  | result.coeffRef(2, 0) = c02; | 
|  | result.row(0) = cofactors_col0 * invdet; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, typename ResultType> | 
|  | struct compute_inverse<MatrixType, ResultType, 3> { | 
|  | EIGEN_DEVICE_FUNC static inline void run(const MatrixType& matrix, ResultType& result) { | 
|  | typedef typename ResultType::Scalar Scalar; | 
|  | Matrix<typename MatrixType::Scalar, 3, 1> cofactors_col0; | 
|  | cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType, 0, 0>(matrix); | 
|  | cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType, 1, 0>(matrix); | 
|  | cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType, 2, 0>(matrix); | 
|  | const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); | 
|  | const Scalar invdet = Scalar(1) / det; | 
|  | compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType, typename ResultType> | 
|  | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3> { | 
|  | EIGEN_DEVICE_FUNC static inline void run(const MatrixType& matrix, | 
|  | const typename MatrixType::RealScalar& absDeterminantThreshold, | 
|  | ResultType& inverse, typename ResultType::Scalar& determinant, | 
|  | bool& invertible) { | 
|  | typedef typename ResultType::Scalar Scalar; | 
|  | Matrix<Scalar, 3, 1> cofactors_col0; | 
|  | cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType, 0, 0>(matrix); | 
|  | cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType, 1, 0>(matrix); | 
|  | cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType, 2, 0>(matrix); | 
|  | determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); | 
|  | invertible = Eigen::numext::abs(determinant) > absDeterminantThreshold; | 
|  | if (!invertible) return; | 
|  | const Scalar invdet = Scalar(1) / determinant; | 
|  | compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /**************************** | 
|  | *** Size 4 implementation *** | 
|  | ****************************/ | 
|  |  | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline const typename Derived::Scalar general_det3_helper(const MatrixBase<Derived>& matrix, int i1, | 
|  | int i2, int i3, int j1, int j2, int j3) { | 
|  | return matrix.coeff(i1, j1) * | 
|  | (matrix.coeff(i2, j2) * matrix.coeff(i3, j3) - matrix.coeff(i2, j3) * matrix.coeff(i3, j2)); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int i, int j> | 
|  | EIGEN_DEVICE_FUNC inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix) { | 
|  | enum { i1 = (i + 1) % 4, i2 = (i + 2) % 4, i3 = (i + 3) % 4, j1 = (j + 1) % 4, j2 = (j + 2) % 4, j3 = (j + 3) % 4 }; | 
|  | return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3) + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3) + | 
|  | general_det3_helper(matrix, i3, i1, i2, j1, j2, j3); | 
|  | } | 
|  |  | 
|  | template <int Arch, typename Scalar, typename MatrixType, typename ResultType> | 
|  | struct compute_inverse_size4 { | 
|  | EIGEN_DEVICE_FUNC static void run(const MatrixType& matrix, ResultType& result) { | 
|  | result.coeffRef(0, 0) = cofactor_4x4<MatrixType, 0, 0>(matrix); | 
|  | result.coeffRef(1, 0) = -cofactor_4x4<MatrixType, 0, 1>(matrix); | 
|  | result.coeffRef(2, 0) = cofactor_4x4<MatrixType, 0, 2>(matrix); | 
|  | result.coeffRef(3, 0) = -cofactor_4x4<MatrixType, 0, 3>(matrix); | 
|  | result.coeffRef(0, 2) = cofactor_4x4<MatrixType, 2, 0>(matrix); | 
|  | result.coeffRef(1, 2) = -cofactor_4x4<MatrixType, 2, 1>(matrix); | 
|  | result.coeffRef(2, 2) = cofactor_4x4<MatrixType, 2, 2>(matrix); | 
|  | result.coeffRef(3, 2) = -cofactor_4x4<MatrixType, 2, 3>(matrix); | 
|  | result.coeffRef(0, 1) = -cofactor_4x4<MatrixType, 1, 0>(matrix); | 
|  | result.coeffRef(1, 1) = cofactor_4x4<MatrixType, 1, 1>(matrix); | 
|  | result.coeffRef(2, 1) = -cofactor_4x4<MatrixType, 1, 2>(matrix); | 
|  | result.coeffRef(3, 1) = cofactor_4x4<MatrixType, 1, 3>(matrix); | 
|  | result.coeffRef(0, 3) = -cofactor_4x4<MatrixType, 3, 0>(matrix); | 
|  | result.coeffRef(1, 3) = cofactor_4x4<MatrixType, 3, 1>(matrix); | 
|  | result.coeffRef(2, 3) = -cofactor_4x4<MatrixType, 3, 2>(matrix); | 
|  | result.coeffRef(3, 3) = cofactor_4x4<MatrixType, 3, 3>(matrix); | 
|  | result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType, typename ResultType> | 
|  | struct compute_inverse<MatrixType, ResultType, 4> | 
|  | : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar, MatrixType, ResultType> {}; | 
|  |  | 
|  | template <typename MatrixType, typename ResultType> | 
|  | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4> { | 
|  | EIGEN_DEVICE_FUNC static inline void run(const MatrixType& matrix, | 
|  | const typename MatrixType::RealScalar& absDeterminantThreshold, | 
|  | ResultType& inverse, typename ResultType::Scalar& determinant, | 
|  | bool& invertible) { | 
|  | using std::abs; | 
|  | determinant = matrix.determinant(); | 
|  | invertible = abs(determinant) > absDeterminantThreshold; | 
|  | if (invertible && extract_data(matrix) != extract_data(inverse)) { | 
|  | compute_inverse<MatrixType, ResultType>::run(matrix, inverse); | 
|  | } else if (invertible) { | 
|  | MatrixType matrix_t = matrix; | 
|  | compute_inverse<MatrixType, ResultType>::run(matrix_t, inverse); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /************************* | 
|  | *** MatrixBase methods *** | 
|  | *************************/ | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // Specialization for "dense = dense_xpr.inverse()" | 
|  | template <typename DstXprType, typename XprType> | 
|  | struct Assignment<DstXprType, Inverse<XprType>, | 
|  | internal::assign_op<typename DstXprType::Scalar, typename XprType::Scalar>, Dense2Dense> { | 
|  | typedef Inverse<XprType> SrcXprType; | 
|  | EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, | 
|  | const internal::assign_op<typename DstXprType::Scalar, typename XprType::Scalar>&) { | 
|  | Index dstRows = src.rows(); | 
|  | Index dstCols = src.cols(); | 
|  | if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); | 
|  |  | 
|  | const int Size = plain_enum_min(XprType::ColsAtCompileTime, DstXprType::ColsAtCompileTime); | 
|  | EIGEN_ONLY_USED_FOR_DEBUG(Size); | 
|  | eigen_assert(((Size <= 1) || (Size > 4) || (extract_data(src.nestedExpression()) != extract_data(dst))) && | 
|  | "Aliasing problem detected in inverse(), you need to do inverse().eval() here."); | 
|  |  | 
|  | typedef typename internal::nested_eval<XprType, XprType::ColsAtCompileTime>::type ActualXprType; | 
|  | typedef internal::remove_all_t<ActualXprType> ActualXprTypeCleanded; | 
|  |  | 
|  | ActualXprType actual_xpr(src.nestedExpression()); | 
|  |  | 
|  | compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \lu_module | 
|  | * | 
|  | * \returns the matrix inverse of this matrix. | 
|  | * | 
|  | * For small fixed sizes up to 4x4, this method uses cofactors. | 
|  | * In the general case, this method uses class PartialPivLU. | 
|  | * | 
|  | * \note This matrix must be invertible, otherwise the result is undefined. If you need an | 
|  | * invertibility check, do the following: | 
|  | * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck(). | 
|  | * \li for the general case, use class FullPivLU. | 
|  | * | 
|  | * Example: \include MatrixBase_inverse.cpp | 
|  | * Output: \verbinclude MatrixBase_inverse.out | 
|  | * | 
|  | * \sa computeInverseAndDetWithCheck() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline const Inverse<Derived> MatrixBase<Derived>::inverse() const { | 
|  | EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger, THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) | 
|  | eigen_assert(rows() == cols()); | 
|  | return Inverse<Derived>(derived()); | 
|  | } | 
|  |  | 
|  | /** \lu_module | 
|  | * | 
|  | * Computation of matrix inverse and determinant, with invertibility check. | 
|  | * | 
|  | * This is only for fixed-size square matrices of size up to 4x4. | 
|  | * | 
|  | * Notice that it will trigger a copy of input matrix when trying to do the inverse in place. | 
|  | * | 
|  | * \param inverse Reference to the matrix in which to store the inverse. | 
|  | * \param determinant Reference to the variable in which to store the determinant. | 
|  | * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. | 
|  | * \param absDeterminantThreshold Optional parameter controlling the invertibility check. | 
|  | *                                The matrix will be declared invertible if the absolute value of its | 
|  | *                                determinant is greater than this threshold. | 
|  | * | 
|  | * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp | 
|  | * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out | 
|  | * | 
|  | * \sa inverse(), computeInverseWithCheck() | 
|  | */ | 
|  | template <typename Derived> | 
|  | template <typename ResultType> | 
|  | inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(ResultType& inverse, | 
|  | typename ResultType::Scalar& determinant, | 
|  | bool& invertible, | 
|  | const RealScalar& absDeterminantThreshold) const { | 
|  | // i'd love to put some static assertions there, but SFINAE means that they have no effect... | 
|  | eigen_assert(rows() == cols()); | 
|  | // for 2x2, it's worth giving a chance to avoid evaluating. | 
|  | // for larger sizes, evaluating has negligible cost and limits code size. | 
|  | typedef std::conditional_t<RowsAtCompileTime == 2, | 
|  | internal::remove_all_t<typename internal::nested_eval<Derived, 2>::type>, PlainObject> | 
|  | MatrixType; | 
|  | internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run(derived(), absDeterminantThreshold, inverse, | 
|  | determinant, invertible); | 
|  | } | 
|  |  | 
|  | /** \lu_module | 
|  | * | 
|  | * Computation of matrix inverse, with invertibility check. | 
|  | * | 
|  | * This is only for fixed-size square matrices of size up to 4x4. | 
|  | * | 
|  | * Notice that it will trigger a copy of input matrix when trying to do the inverse in place. | 
|  | * | 
|  | * \param inverse Reference to the matrix in which to store the inverse. | 
|  | * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. | 
|  | * \param absDeterminantThreshold Optional parameter controlling the invertibility check. | 
|  | *                                The matrix will be declared invertible if the absolute value of its | 
|  | *                                determinant is greater than this threshold. | 
|  | * | 
|  | * Example: \include MatrixBase_computeInverseWithCheck.cpp | 
|  | * Output: \verbinclude MatrixBase_computeInverseWithCheck.out | 
|  | * | 
|  | * \sa inverse(), computeInverseAndDetWithCheck() | 
|  | */ | 
|  | template <typename Derived> | 
|  | template <typename ResultType> | 
|  | inline void MatrixBase<Derived>::computeInverseWithCheck(ResultType& inverse, bool& invertible, | 
|  | const RealScalar& absDeterminantThreshold) const { | 
|  | Scalar determinant; | 
|  | // i'd love to put some static assertions there, but SFINAE means that they have no effect... | 
|  | eigen_assert(rows() == cols()); | 
|  | computeInverseAndDetWithCheck(inverse, determinant, invertible, absDeterminantThreshold); | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_INVERSE_IMPL_H |