| /* | 
 |  Copyright (c) 2011, Intel Corporation. All rights reserved. | 
 |  | 
 |  Redistribution and use in source and binary forms, with or without modification, | 
 |  are permitted provided that the following conditions are met: | 
 |  | 
 |  * Redistributions of source code must retain the above copyright notice, this | 
 |    list of conditions and the following disclaimer. | 
 |  * Redistributions in binary form must reproduce the above copyright notice, | 
 |    this list of conditions and the following disclaimer in the documentation | 
 |    and/or other materials provided with the distribution. | 
 |  * Neither the name of Intel Corporation nor the names of its contributors may | 
 |    be used to endorse or promote products derived from this software without | 
 |    specific prior written permission. | 
 |  | 
 |  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | 
 |  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
 |  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
 |  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR | 
 |  ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
 |  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | 
 |  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
 |  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  ******************************************************************************** | 
 |  *   Content : Eigen bindings to Intel(R) MKL PARDISO | 
 |  ******************************************************************************** | 
 | */ | 
 |  | 
 | #ifndef EIGEN_PARDISOSUPPORT_H | 
 | #define EIGEN_PARDISOSUPPORT_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | template <typename MatrixType_> | 
 | class PardisoLU; | 
 | template <typename MatrixType_, int Options = Upper> | 
 | class PardisoLLT; | 
 | template <typename MatrixType_, int Options = Upper> | 
 | class PardisoLDLT; | 
 |  | 
 | namespace internal { | 
 | template <typename IndexType> | 
 | struct pardiso_run_selector { | 
 |   static IndexType run(_MKL_DSS_HANDLE_t pt, IndexType maxfct, IndexType mnum, IndexType type, IndexType phase, | 
 |                        IndexType n, void* a, IndexType* ia, IndexType* ja, IndexType* perm, IndexType nrhs, | 
 |                        IndexType* iparm, IndexType msglvl, void* b, void* x) { | 
 |     IndexType error = 0; | 
 |     ::pardiso(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error); | 
 |     return error; | 
 |   } | 
 | }; | 
 | template <> | 
 | struct pardiso_run_selector<long long int> { | 
 |   typedef long long int IndexType; | 
 |   static IndexType run(_MKL_DSS_HANDLE_t pt, IndexType maxfct, IndexType mnum, IndexType type, IndexType phase, | 
 |                        IndexType n, void* a, IndexType* ia, IndexType* ja, IndexType* perm, IndexType nrhs, | 
 |                        IndexType* iparm, IndexType msglvl, void* b, void* x) { | 
 |     IndexType error = 0; | 
 |     ::pardiso_64(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error); | 
 |     return error; | 
 |   } | 
 | }; | 
 |  | 
 | template <class Pardiso> | 
 | struct pardiso_traits; | 
 |  | 
 | template <typename MatrixType_> | 
 | struct pardiso_traits<PardisoLU<MatrixType_> > { | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef typename MatrixType_::Scalar Scalar; | 
 |   typedef typename MatrixType_::RealScalar RealScalar; | 
 |   typedef typename MatrixType_::StorageIndex StorageIndex; | 
 | }; | 
 |  | 
 | template <typename MatrixType_, int Options> | 
 | struct pardiso_traits<PardisoLLT<MatrixType_, Options> > { | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef typename MatrixType_::Scalar Scalar; | 
 |   typedef typename MatrixType_::RealScalar RealScalar; | 
 |   typedef typename MatrixType_::StorageIndex StorageIndex; | 
 | }; | 
 |  | 
 | template <typename MatrixType_, int Options> | 
 | struct pardiso_traits<PardisoLDLT<MatrixType_, Options> > { | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef typename MatrixType_::Scalar Scalar; | 
 |   typedef typename MatrixType_::RealScalar RealScalar; | 
 |   typedef typename MatrixType_::StorageIndex StorageIndex; | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | template <class Derived> | 
 | class PardisoImpl : public SparseSolverBase<Derived> { | 
 |  protected: | 
 |   typedef SparseSolverBase<Derived> Base; | 
 |   using Base::derived; | 
 |   using Base::m_isInitialized; | 
 |  | 
 |   typedef internal::pardiso_traits<Derived> Traits; | 
 |  | 
 |  public: | 
 |   using Base::_solve_impl; | 
 |  | 
 |   typedef typename Traits::MatrixType MatrixType; | 
 |   typedef typename Traits::Scalar Scalar; | 
 |   typedef typename Traits::RealScalar RealScalar; | 
 |   typedef typename Traits::StorageIndex StorageIndex; | 
 |   typedef SparseMatrix<Scalar, RowMajor, StorageIndex> SparseMatrixType; | 
 |   typedef Matrix<Scalar, Dynamic, 1> VectorType; | 
 |   typedef Matrix<StorageIndex, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | 
 |   typedef Matrix<StorageIndex, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | 
 |   typedef Array<StorageIndex, 64, 1, DontAlign> ParameterType; | 
 |   enum { ScalarIsComplex = NumTraits<Scalar>::IsComplex, ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic }; | 
 |  | 
 |   PardisoImpl() : m_analysisIsOk(false), m_factorizationIsOk(false) { | 
 |     eigen_assert((sizeof(StorageIndex) >= sizeof(_INTEGER_t) && sizeof(StorageIndex) <= 8) && | 
 |                  "Non-supported index type"); | 
 |     m_iparm.setZero(); | 
 |     m_msglvl = 0;  // No output | 
 |     m_isInitialized = false; | 
 |   } | 
 |  | 
 |   ~PardisoImpl() { pardisoRelease(); } | 
 |  | 
 |   inline Index cols() const { return m_size; } | 
 |   inline Index rows() const { return m_size; } | 
 |  | 
 |   /** \brief Reports whether previous computation was successful. | 
 |    * | 
 |    * \returns \c Success if computation was successful, | 
 |    *          \c NumericalIssue if the matrix appears to be negative. | 
 |    */ | 
 |   ComputationInfo info() const { | 
 |     eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 |   /** \warning for advanced usage only. | 
 |    * \returns a reference to the parameter array controlling PARDISO. | 
 |    * See the PARDISO manual to know how to use it. */ | 
 |   ParameterType& pardisoParameterArray() { return m_iparm; } | 
 |  | 
 |   /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
 |    * | 
 |    * This function is particularly useful when solving for several problems having the same structure. | 
 |    * | 
 |    * \sa factorize() | 
 |    */ | 
 |   Derived& analyzePattern(const MatrixType& matrix); | 
 |  | 
 |   /** Performs a numeric decomposition of \a matrix | 
 |    * | 
 |    * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. | 
 |    * | 
 |    * \sa analyzePattern() | 
 |    */ | 
 |   Derived& factorize(const MatrixType& matrix); | 
 |  | 
 |   Derived& compute(const MatrixType& matrix); | 
 |  | 
 |   template <typename Rhs, typename Dest> | 
 |   void _solve_impl(const MatrixBase<Rhs>& b, MatrixBase<Dest>& dest) const; | 
 |  | 
 |  protected: | 
 |   void pardisoRelease() { | 
 |     if (m_isInitialized)  // Factorization ran at least once | 
 |     { | 
 |       internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, -1, | 
 |                                                         internal::convert_index<StorageIndex>(m_size), 0, 0, 0, | 
 |                                                         m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); | 
 |       m_isInitialized = false; | 
 |     } | 
 |   } | 
 |  | 
 |   void pardisoInit(int type) { | 
 |     m_type = type; | 
 |     bool symmetric = std::abs(m_type) < 10; | 
 |     m_iparm[0] = 1;                   // No solver default | 
 |     m_iparm[1] = 2;                   // use Metis for the ordering | 
 |     m_iparm[2] = 0;                   // Reserved. Set to zero. (??Numbers of processors, value of OMP_NUM_THREADS??) | 
 |     m_iparm[3] = 0;                   // No iterative-direct algorithm | 
 |     m_iparm[4] = 0;                   // No user fill-in reducing permutation | 
 |     m_iparm[5] = 0;                   // Write solution into x, b is left unchanged | 
 |     m_iparm[6] = 0;                   // Not in use | 
 |     m_iparm[7] = 2;                   // Max numbers of iterative refinement steps | 
 |     m_iparm[8] = 0;                   // Not in use | 
 |     m_iparm[9] = 13;                  // Perturb the pivot elements with 1E-13 | 
 |     m_iparm[10] = symmetric ? 0 : 1;  // Use nonsymmetric permutation and scaling MPS | 
 |     m_iparm[11] = 0;                  // Not in use | 
 |     m_iparm[12] = symmetric ? 0 : 1;  // Maximum weighted matching algorithm is switched-off (default for symmetric). | 
 |                                       // Try m_iparm[12] = 1 in case of inappropriate accuracy | 
 |     m_iparm[13] = 0;                  // Output: Number of perturbed pivots | 
 |     m_iparm[14] = 0;                  // Not in use | 
 |     m_iparm[15] = 0;                  // Not in use | 
 |     m_iparm[16] = 0;                  // Not in use | 
 |     m_iparm[17] = -1;                 // Output: Number of nonzeros in the factor LU | 
 |     m_iparm[18] = -1;                 // Output: Mflops for LU factorization | 
 |     m_iparm[19] = 0;                  // Output: Numbers of CG Iterations | 
 |  | 
 |     m_iparm[20] = 0;  // 1x1 pivoting | 
 |     m_iparm[26] = 0;  // No matrix checker | 
 |     m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0; | 
 |     m_iparm[34] = 1;  // C indexing | 
 |     m_iparm[36] = 0;  // CSR | 
 |     m_iparm[59] = 0;  // 0 - In-Core ; 1 - Automatic switch between In-Core and Out-of-Core modes ; 2 - Out-of-Core | 
 |  | 
 |     memset(m_pt, 0, sizeof(m_pt)); | 
 |   } | 
 |  | 
 |  protected: | 
 |   // cached data to reduce reallocation, etc. | 
 |  | 
 |   void manageErrorCode(Index error) const { | 
 |     switch (error) { | 
 |       case 0: | 
 |         m_info = Success; | 
 |         break; | 
 |       case -4: | 
 |       case -7: | 
 |         m_info = NumericalIssue; | 
 |         break; | 
 |       default: | 
 |         m_info = InvalidInput; | 
 |     } | 
 |   } | 
 |  | 
 |   mutable SparseMatrixType m_matrix; | 
 |   mutable ComputationInfo m_info; | 
 |   bool m_analysisIsOk, m_factorizationIsOk; | 
 |   StorageIndex m_type, m_msglvl; | 
 |   mutable void* m_pt[64]; | 
 |   mutable ParameterType m_iparm; | 
 |   mutable IntColVectorType m_perm; | 
 |   Index m_size; | 
 | }; | 
 |  | 
 | template <class Derived> | 
 | Derived& PardisoImpl<Derived>::compute(const MatrixType& a) { | 
 |   m_size = a.rows(); | 
 |   eigen_assert(a.rows() == a.cols()); | 
 |  | 
 |   pardisoRelease(); | 
 |   m_perm.setZero(m_size); | 
 |   derived().getMatrix(a); | 
 |  | 
 |   Index error; | 
 |   error = internal::pardiso_run_selector<StorageIndex>::run( | 
 |       m_pt, 1, 1, m_type, 12, internal::convert_index<StorageIndex>(m_size), m_matrix.valuePtr(), | 
 |       m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); | 
 |   manageErrorCode(error); | 
 |   m_analysisIsOk = m_info == Eigen::Success; | 
 |   m_factorizationIsOk = m_info == Eigen::Success; | 
 |   m_isInitialized = true; | 
 |   return derived(); | 
 | } | 
 |  | 
 | template <class Derived> | 
 | Derived& PardisoImpl<Derived>::analyzePattern(const MatrixType& a) { | 
 |   m_size = a.rows(); | 
 |   eigen_assert(m_size == a.cols()); | 
 |  | 
 |   pardisoRelease(); | 
 |   m_perm.setZero(m_size); | 
 |   derived().getMatrix(a); | 
 |  | 
 |   Index error; | 
 |   error = internal::pardiso_run_selector<StorageIndex>::run( | 
 |       m_pt, 1, 1, m_type, 11, internal::convert_index<StorageIndex>(m_size), m_matrix.valuePtr(), | 
 |       m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); | 
 |  | 
 |   manageErrorCode(error); | 
 |   m_analysisIsOk = m_info == Eigen::Success; | 
 |   m_factorizationIsOk = false; | 
 |   m_isInitialized = true; | 
 |   return derived(); | 
 | } | 
 |  | 
 | template <class Derived> | 
 | Derived& PardisoImpl<Derived>::factorize(const MatrixType& a) { | 
 |   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); | 
 |   eigen_assert(m_size == a.rows() && m_size == a.cols()); | 
 |  | 
 |   derived().getMatrix(a); | 
 |  | 
 |   Index error; | 
 |   error = internal::pardiso_run_selector<StorageIndex>::run( | 
 |       m_pt, 1, 1, m_type, 22, internal::convert_index<StorageIndex>(m_size), m_matrix.valuePtr(), | 
 |       m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); | 
 |  | 
 |   manageErrorCode(error); | 
 |   m_factorizationIsOk = m_info == Eigen::Success; | 
 |   return derived(); | 
 | } | 
 |  | 
 | template <class Derived> | 
 | template <typename BDerived, typename XDerived> | 
 | void PardisoImpl<Derived>::_solve_impl(const MatrixBase<BDerived>& b, MatrixBase<XDerived>& x) const { | 
 |   if (m_iparm[0] == 0)  // Factorization was not computed | 
 |   { | 
 |     m_info = InvalidInput; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Index n = m_matrix.rows(); | 
 |   Index nrhs = Index(b.cols()); | 
 |   eigen_assert(m_size == b.rows()); | 
 |   eigen_assert(((MatrixBase<BDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && | 
 |                "Row-major right hand sides are not supported"); | 
 |   eigen_assert(((MatrixBase<XDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && | 
 |                "Row-major matrices of unknowns are not supported"); | 
 |   eigen_assert(((nrhs == 1) || b.outerStride() == b.rows())); | 
 |  | 
 |   //  switch (transposed) { | 
 |   //    case SvNoTrans    : m_iparm[11] = 0 ; break; | 
 |   //    case SvTranspose  : m_iparm[11] = 2 ; break; | 
 |   //    case SvAdjoint    : m_iparm[11] = 1 ; break; | 
 |   //    default: | 
 |   //      //std::cerr << "Eigen: transposition  option \"" << transposed << "\" not supported by the PARDISO backend\n"; | 
 |   //      m_iparm[11] = 0; | 
 |   //  } | 
 |  | 
 |   Scalar* rhs_ptr = const_cast<Scalar*>(b.derived().data()); | 
 |   Matrix<Scalar, Dynamic, Dynamic, ColMajor> tmp; | 
 |  | 
 |   // Pardiso cannot solve in-place | 
 |   if (rhs_ptr == x.derived().data()) { | 
 |     tmp = b; | 
 |     rhs_ptr = tmp.data(); | 
 |   } | 
 |  | 
 |   Index error; | 
 |   error = internal::pardiso_run_selector<StorageIndex>::run( | 
 |       m_pt, 1, 1, m_type, 33, internal::convert_index<StorageIndex>(m_size), m_matrix.valuePtr(), | 
 |       m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), m_perm.data(), internal::convert_index<StorageIndex>(nrhs), | 
 |       m_iparm.data(), m_msglvl, rhs_ptr, x.derived().data()); | 
 |  | 
 |   manageErrorCode(error); | 
 | } | 
 |  | 
 | /** \ingroup PardisoSupport_Module | 
 |  * \class PardisoLU | 
 |  * \brief A sparse direct LU factorization and solver based on the PARDISO library | 
 |  * | 
 |  * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization | 
 |  * using the Intel MKL PARDISO library. The sparse matrix A must be squared and invertible. | 
 |  * The vectors or matrices X and B can be either dense or sparse. | 
 |  * | 
 |  * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: | 
 |  * \code solver.pardisoParameterArray()[59] = 1; \endcode | 
 |  * | 
 |  * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |  * | 
 |  * \implsparsesolverconcept | 
 |  * | 
 |  * \sa \ref TutorialSparseSolverConcept, class SparseLU | 
 |  */ | 
 | template <typename MatrixType> | 
 | class PardisoLU : public PardisoImpl<PardisoLU<MatrixType> > { | 
 |  protected: | 
 |   typedef PardisoImpl<PardisoLU> Base; | 
 |   using Base::m_matrix; | 
 |   using Base::pardisoInit; | 
 |   friend class PardisoImpl<PardisoLU<MatrixType> >; | 
 |  | 
 |  public: | 
 |   typedef typename Base::Scalar Scalar; | 
 |   typedef typename Base::RealScalar RealScalar; | 
 |  | 
 |   using Base::compute; | 
 |   using Base::solve; | 
 |  | 
 |   PardisoLU() : Base() { pardisoInit(Base::ScalarIsComplex ? 13 : 11); } | 
 |  | 
 |   explicit PardisoLU(const MatrixType& matrix) : Base() { | 
 |     pardisoInit(Base::ScalarIsComplex ? 13 : 11); | 
 |     compute(matrix); | 
 |   } | 
 |  | 
 |  protected: | 
 |   void getMatrix(const MatrixType& matrix) { | 
 |     m_matrix = matrix; | 
 |     m_matrix.makeCompressed(); | 
 |   } | 
 | }; | 
 |  | 
 | /** \ingroup PardisoSupport_Module | 
 |  * \class PardisoLLT | 
 |  * \brief A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library | 
 |  * | 
 |  * This class allows to solve for A.X = B sparse linear problems via a LL^T Cholesky factorization | 
 |  * using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite. | 
 |  * The vectors or matrices X and B can be either dense or sparse. | 
 |  * | 
 |  * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: | 
 |  * \code solver.pardisoParameterArray()[59] = 1; \endcode | 
 |  * | 
 |  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |  * \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular | 
 |  * part has to be used. Upper|Lower can be used to tell both triangular parts can be used as input. | 
 |  * | 
 |  * \implsparsesolverconcept | 
 |  * | 
 |  * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT | 
 |  */ | 
 | template <typename MatrixType, int UpLo_> | 
 | class PardisoLLT : public PardisoImpl<PardisoLLT<MatrixType, UpLo_> > { | 
 |  protected: | 
 |   typedef PardisoImpl<PardisoLLT<MatrixType, UpLo_> > Base; | 
 |   using Base::m_matrix; | 
 |   using Base::pardisoInit; | 
 |   friend class PardisoImpl<PardisoLLT<MatrixType, UpLo_> >; | 
 |  | 
 |  public: | 
 |   typedef typename Base::Scalar Scalar; | 
 |   typedef typename Base::RealScalar RealScalar; | 
 |   typedef typename Base::StorageIndex StorageIndex; | 
 |   enum { UpLo = UpLo_ }; | 
 |   using Base::compute; | 
 |  | 
 |   PardisoLLT() : Base() { pardisoInit(Base::ScalarIsComplex ? 4 : 2); } | 
 |  | 
 |   explicit PardisoLLT(const MatrixType& matrix) : Base() { | 
 |     pardisoInit(Base::ScalarIsComplex ? 4 : 2); | 
 |     compute(matrix); | 
 |   } | 
 |  | 
 |  protected: | 
 |   void getMatrix(const MatrixType& matrix) { | 
 |     // PARDISO supports only upper, row-major matrices | 
 |     PermutationMatrix<Dynamic, Dynamic, StorageIndex> p_null; | 
 |     m_matrix.resize(matrix.rows(), matrix.cols()); | 
 |     m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null); | 
 |     m_matrix.makeCompressed(); | 
 |   } | 
 | }; | 
 |  | 
 | /** \ingroup PardisoSupport_Module | 
 |  * \class PardisoLDLT | 
 |  * \brief A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library | 
 |  * | 
 |  * This class allows to solve for A.X = B sparse linear problems via a LDL^T Cholesky factorization | 
 |  * using the Intel MKL PARDISO library. The sparse matrix A is assumed to be selfajoint and positive definite. | 
 |  * For complex matrices, A can also be symmetric only, see the \a Options template parameter. | 
 |  * The vectors or matrices X and B can be either dense or sparse. | 
 |  * | 
 |  * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: | 
 |  * \code solver.pardisoParameterArray()[59] = 1; \endcode | 
 |  * | 
 |  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |  * \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the | 
 |  * upper triangular part has to be used. Symmetric can be used for symmetric, non-selfadjoint complex matrices, the | 
 |  * default being to assume a selfadjoint matrix. Upper|Lower can be used to tell both triangular parts can be used as | 
 |  * input. | 
 |  * | 
 |  * \implsparsesolverconcept | 
 |  * | 
 |  * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT | 
 |  */ | 
 | template <typename MatrixType, int Options> | 
 | class PardisoLDLT : public PardisoImpl<PardisoLDLT<MatrixType, Options> > { | 
 |  protected: | 
 |   typedef PardisoImpl<PardisoLDLT<MatrixType, Options> > Base; | 
 |   using Base::m_matrix; | 
 |   using Base::pardisoInit; | 
 |   friend class PardisoImpl<PardisoLDLT<MatrixType, Options> >; | 
 |  | 
 |  public: | 
 |   typedef typename Base::Scalar Scalar; | 
 |   typedef typename Base::RealScalar RealScalar; | 
 |   typedef typename Base::StorageIndex StorageIndex; | 
 |   using Base::compute; | 
 |   enum { UpLo = Options & (Upper | Lower) }; | 
 |  | 
 |   PardisoLDLT() : Base() { pardisoInit(Base::ScalarIsComplex ? (bool(Options & Symmetric) ? 6 : -4) : -2); } | 
 |  | 
 |   explicit PardisoLDLT(const MatrixType& matrix) : Base() { | 
 |     pardisoInit(Base::ScalarIsComplex ? (bool(Options & Symmetric) ? 6 : -4) : -2); | 
 |     compute(matrix); | 
 |   } | 
 |  | 
 |   void getMatrix(const MatrixType& matrix) { | 
 |     // PARDISO supports only upper, row-major matrices | 
 |     PermutationMatrix<Dynamic, Dynamic, StorageIndex> p_null; | 
 |     m_matrix.resize(matrix.rows(), matrix.cols()); | 
 |     m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null); | 
 |     m_matrix.makeCompressed(); | 
 |   } | 
 | }; | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_PARDISOSUPPORT_H |