|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  | #include <iostream> | 
|  | #include "common.h" | 
|  |  | 
|  | EIGEN_BLAS_FUNC(gemm) | 
|  | (const char *opa, const char *opb, const int *m, const int *n, const int *k, const RealScalar *palpha, | 
|  | const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, | 
|  | const int *ldc) { | 
|  | //   std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << | 
|  | //   *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n"; | 
|  | using Eigen::ColMajor; | 
|  | using Eigen::DenseIndex; | 
|  | using Eigen::Dynamic; | 
|  | using Eigen::RowMajor; | 
|  | typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, | 
|  | Scalar *, DenseIndex, DenseIndex, Scalar, Eigen::internal::level3_blocking<Scalar, Scalar> &, | 
|  | Eigen::internal::GemmParallelInfo<DenseIndex> *); | 
|  | static const functype func[12] = { | 
|  | // array index: NOTR  | (NOTR << 2) | 
|  | (Eigen::internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, ColMajor, false, | 
|  | ColMajor, 1>::run), | 
|  | // array index: TR    | (NOTR << 2) | 
|  | (Eigen::internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, false, | 
|  | ColMajor, 1>::run), | 
|  | // array index: ADJ   | (NOTR << 2) | 
|  | (Eigen::internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false, | 
|  | ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (TR   << 2) | 
|  | (Eigen::internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, false, | 
|  | ColMajor, 1>::run), | 
|  | // array index: TR    | (TR   << 2) | 
|  | (Eigen::internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, RowMajor, false, | 
|  | ColMajor, 1>::run), | 
|  | // array index: ADJ   | (TR   << 2) | 
|  | (Eigen::internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, RowMajor, false, | 
|  | ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (ADJ  << 2) | 
|  | (Eigen::internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj, | 
|  | ColMajor, 1>::run), | 
|  | // array index: TR    | (ADJ  << 2) | 
|  | (Eigen::internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, RowMajor, Conj, | 
|  | ColMajor, 1>::run), | 
|  | // array index: ADJ   | (ADJ  << 2) | 
|  | (Eigen::internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, RowMajor, Conj, | 
|  | ColMajor, 1>::run), | 
|  | 0}; | 
|  |  | 
|  | const Scalar *a = reinterpret_cast<const Scalar *>(pa); | 
|  | const Scalar *b = reinterpret_cast<const Scalar *>(pb); | 
|  | Scalar *c = reinterpret_cast<Scalar *>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); | 
|  | Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); | 
|  |  | 
|  | int info = 0; | 
|  | if (OP(*opa) == INVALID) | 
|  | info = 1; | 
|  | else if (OP(*opb) == INVALID) | 
|  | info = 2; | 
|  | else if (*m < 0) | 
|  | info = 3; | 
|  | else if (*n < 0) | 
|  | info = 4; | 
|  | else if (*k < 0) | 
|  | info = 5; | 
|  | else if (*lda < std::max(1, (OP(*opa) == NOTR) ? *m : *k)) | 
|  | info = 8; | 
|  | else if (*ldb < std::max(1, (OP(*opb) == NOTR) ? *k : *n)) | 
|  | info = 10; | 
|  | else if (*ldc < std::max(1, *m)) | 
|  | info = 13; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "GEMM ", &info); | 
|  |  | 
|  | if (*m == 0 || *n == 0) return; | 
|  |  | 
|  | if (beta != Scalar(1)) { | 
|  | if (beta == Scalar(0)) | 
|  | matrix(c, *m, *n, *ldc).setZero(); | 
|  | else | 
|  | matrix(c, *m, *n, *ldc) *= beta; | 
|  | } | 
|  |  | 
|  | if (*k == 0) return; | 
|  |  | 
|  | Eigen::internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, *k, 1, | 
|  | true); | 
|  |  | 
|  | int code = OP(*opa) | (OP(*opb) << 2); | 
|  | func[code](*m, *n, *k, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking, 0); | 
|  | } | 
|  |  | 
|  | EIGEN_BLAS_FUNC(trsm) | 
|  | (const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n, | 
|  | const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb) { | 
|  | //   std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " | 
|  | //   << *palpha << " " << *lda << " " << *ldb<< "\n"; | 
|  | using Eigen::ColMajor; | 
|  | using Eigen::DenseIndex; | 
|  | using Eigen::Dynamic; | 
|  | using Eigen::Lower; | 
|  | using Eigen::OnTheLeft; | 
|  | using Eigen::OnTheRight; | 
|  | using Eigen::RowMajor; | 
|  | using Eigen::UnitDiag; | 
|  | using Eigen::Upper; | 
|  | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, | 
|  | Eigen::internal::level3_blocking<Scalar, Scalar> &); | 
|  | static const functype func[32] = { | 
|  | // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, false, ColMajor, ColMajor, | 
|  | 1>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, false, RowMajor, ColMajor, | 
|  | 1>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, Conj, RowMajor, ColMajor, | 
|  | 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, false, ColMajor, ColMajor, | 
|  | 1>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, false, RowMajor, ColMajor, | 
|  | 1>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, Conj, RowMajor, ColMajor, | 
|  | 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, false, ColMajor, ColMajor, | 
|  | 1>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, false, RowMajor, ColMajor, | 
|  | 1>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, Conj, RowMajor, ColMajor, | 
|  | 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, false, ColMajor, ColMajor, | 
|  | 1>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, false, RowMajor, ColMajor, | 
|  | 1>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, Conj, RowMajor, ColMajor, | 
|  | 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, false, ColMajor, | 
|  | ColMajor, 1>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, false, RowMajor, | 
|  | ColMajor, 1>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, Conj, RowMajor, | 
|  | ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, false, ColMajor, | 
|  | ColMajor, 1>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, false, RowMajor, | 
|  | ColMajor, 1>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, Conj, RowMajor, | 
|  | ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, false, ColMajor, | 
|  | ColMajor, 1>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, false, RowMajor, | 
|  | ColMajor, 1>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, Conj, RowMajor, | 
|  | ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, false, ColMajor, | 
|  | ColMajor, 1>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, false, RowMajor, | 
|  | ColMajor, 1>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, Conj, RowMajor, | 
|  | ColMajor, 1>::run), | 
|  | 0}; | 
|  |  | 
|  | const Scalar *a = reinterpret_cast<const Scalar *>(pa); | 
|  | Scalar *b = reinterpret_cast<Scalar *>(pb); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if (SIDE(*side) == INVALID) | 
|  | info = 1; | 
|  | else if (UPLO(*uplo) == INVALID) | 
|  | info = 2; | 
|  | else if (OP(*opa) == INVALID) | 
|  | info = 3; | 
|  | else if (DIAG(*diag) == INVALID) | 
|  | info = 4; | 
|  | else if (*m < 0) | 
|  | info = 5; | 
|  | else if (*n < 0) | 
|  | info = 6; | 
|  | else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n)) | 
|  | info = 9; | 
|  | else if (*ldb < std::max(1, *m)) | 
|  | info = 11; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "TRSM ", &info); | 
|  |  | 
|  | if (*m == 0 || *n == 0) return; | 
|  |  | 
|  | int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); | 
|  |  | 
|  | if (SIDE(*side) == LEFT) { | 
|  | Eigen::internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *m, 1, | 
|  | false); | 
|  | func[code](*m, *n, a, *lda, b, 1, *ldb, blocking); | 
|  | } else { | 
|  | Eigen::internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *n, 1, | 
|  | false); | 
|  | func[code](*n, *m, a, *lda, b, 1, *ldb, blocking); | 
|  | } | 
|  |  | 
|  | if (alpha != Scalar(1)) matrix(b, *m, *n, *ldb) *= alpha; | 
|  | } | 
|  |  | 
|  | // b = alpha*op(a)*b  for side = 'L'or'l' | 
|  | // b = alpha*b*op(a)  for side = 'R'or'r' | 
|  | EIGEN_BLAS_FUNC(trmm) | 
|  | (const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n, | 
|  | const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb) { | 
|  | //   std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " | 
|  | //   << *lda << " " << *ldb << " " << *palpha << "\n"; | 
|  | using Eigen::ColMajor; | 
|  | using Eigen::DenseIndex; | 
|  | using Eigen::Dynamic; | 
|  | using Eigen::Lower; | 
|  | using Eigen::RowMajor; | 
|  | using Eigen::UnitDiag; | 
|  | using Eigen::Upper; | 
|  | typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, | 
|  | Scalar *, DenseIndex, DenseIndex, const Scalar &, | 
|  | Eigen::internal::level3_blocking<Scalar, Scalar> &); | 
|  | static const functype func[32] = { | 
|  | // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, ColMajor, false, ColMajor, | 
|  | false, ColMajor, 1>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, RowMajor, false, ColMajor, | 
|  | false, ColMajor, 1>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, RowMajor, Conj, ColMajor, | 
|  | false, ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, | 
|  | ColMajor, false, ColMajor, 1>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, | 
|  | RowMajor, false, ColMajor, 1>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, | 
|  | RowMajor, Conj, ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, ColMajor, false, ColMajor, | 
|  | false, ColMajor, 1>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, RowMajor, false, ColMajor, | 
|  | false, ColMajor, 1>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, RowMajor, Conj, ColMajor, | 
|  | false, ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, | 
|  | ColMajor, false, ColMajor, 1>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, | 
|  | RowMajor, false, ColMajor, 1>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, | 
|  | RowMajor, Conj, ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, ColMajor, false, | 
|  | ColMajor, false, ColMajor, 1>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, RowMajor, false, | 
|  | ColMajor, false, ColMajor, 1>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, RowMajor, Conj, | 
|  | ColMajor, false, ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false, | 
|  | ColMajor, false, ColMajor, 1>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false, | 
|  | RowMajor, false, ColMajor, 1>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false, | 
|  | RowMajor, Conj, ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, ColMajor, false, | 
|  | ColMajor, false, ColMajor, 1>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, RowMajor, false, | 
|  | ColMajor, false, ColMajor, 1>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, RowMajor, Conj, | 
|  | ColMajor, false, ColMajor, 1>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false, | 
|  | ColMajor, false, ColMajor, 1>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false, | 
|  | RowMajor, false, ColMajor, 1>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (Eigen::internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false, | 
|  | RowMajor, Conj, ColMajor, 1>::run), | 
|  | 0}; | 
|  |  | 
|  | const Scalar *a = reinterpret_cast<const Scalar *>(pa); | 
|  | Scalar *b = reinterpret_cast<Scalar *>(pb); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if (SIDE(*side) == INVALID) | 
|  | info = 1; | 
|  | else if (UPLO(*uplo) == INVALID) | 
|  | info = 2; | 
|  | else if (OP(*opa) == INVALID) | 
|  | info = 3; | 
|  | else if (DIAG(*diag) == INVALID) | 
|  | info = 4; | 
|  | else if (*m < 0) | 
|  | info = 5; | 
|  | else if (*n < 0) | 
|  | info = 6; | 
|  | else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n)) | 
|  | info = 9; | 
|  | else if (*ldb < std::max(1, *m)) | 
|  | info = 11; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "TRMM ", &info); | 
|  |  | 
|  | int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); | 
|  |  | 
|  | if (*m == 0 || *n == 0) return; | 
|  |  | 
|  | // FIXME find a way to avoid this copy | 
|  | Eigen::Matrix<Scalar, Dynamic, Dynamic, ColMajor> tmp = matrix(b, *m, *n, *ldb); | 
|  | matrix(b, *m, *n, *ldb).setZero(); | 
|  |  | 
|  | if (SIDE(*side) == LEFT) { | 
|  | Eigen::internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *m, 1, | 
|  | false); | 
|  | func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, 1, *ldb, alpha, blocking); | 
|  | } else { | 
|  | Eigen::internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *n, 1, | 
|  | false); | 
|  | func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, 1, *ldb, alpha, blocking); | 
|  | } | 
|  | } | 
|  |  | 
|  | // c = alpha*a*b + beta*c  for side = 'L'or'l' | 
|  | // c = alpha*b*a + beta*c  for side = 'R'or'r | 
|  | EIGEN_BLAS_FUNC(symm) | 
|  | (const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, const RealScalar *pa, | 
|  | const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { | 
|  | //   std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb | 
|  | //   << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n"; | 
|  | const Scalar *a = reinterpret_cast<const Scalar *>(pa); | 
|  | const Scalar *b = reinterpret_cast<const Scalar *>(pb); | 
|  | Scalar *c = reinterpret_cast<Scalar *>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); | 
|  | Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); | 
|  |  | 
|  | int info = 0; | 
|  | if (SIDE(*side) == INVALID) | 
|  | info = 1; | 
|  | else if (UPLO(*uplo) == INVALID) | 
|  | info = 2; | 
|  | else if (*m < 0) | 
|  | info = 3; | 
|  | else if (*n < 0) | 
|  | info = 4; | 
|  | else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n)) | 
|  | info = 7; | 
|  | else if (*ldb < std::max(1, *m)) | 
|  | info = 9; | 
|  | else if (*ldc < std::max(1, *m)) | 
|  | info = 12; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "SYMM ", &info); | 
|  |  | 
|  | if (beta != Scalar(1)) { | 
|  | if (beta == Scalar(0)) | 
|  | matrix(c, *m, *n, *ldc).setZero(); | 
|  | else | 
|  | matrix(c, *m, *n, *ldc) *= beta; | 
|  | } | 
|  |  | 
|  | if (*m == 0 || *n == 0) return; | 
|  |  | 
|  | int size = (SIDE(*side) == LEFT) ? (*m) : (*n); | 
|  | using Eigen::ColMajor; | 
|  | using Eigen::DenseIndex; | 
|  | using Eigen::Dynamic; | 
|  | using Eigen::Lower; | 
|  | using Eigen::RowMajor; | 
|  | using Eigen::Upper; | 
|  | #if ISCOMPLEX | 
|  | // FIXME add support for symmetric complex matrix | 
|  | Eigen::Matrix<Scalar, Dynamic, Dynamic, ColMajor> matA(size, size); | 
|  | if (UPLO(*uplo) == UP) { | 
|  | matA.triangularView<Upper>() = matrix(a, size, size, *lda); | 
|  | matA.triangularView<Lower>() = matrix(a, size, size, *lda).transpose(); | 
|  | } else if (UPLO(*uplo) == LO) { | 
|  | matA.triangularView<Lower>() = matrix(a, size, size, *lda); | 
|  | matA.triangularView<Upper>() = matrix(a, size, size, *lda).transpose(); | 
|  | } | 
|  | if (SIDE(*side) == LEFT) | 
|  | matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb); | 
|  | else if (SIDE(*side) == RIGHT) | 
|  | matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA; | 
|  | #else | 
|  | Eigen::internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, size, 1, | 
|  | false); | 
|  |  | 
|  | if (SIDE(*side) == LEFT) | 
|  | if (UPLO(*uplo) == UP) | 
|  | Eigen::internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor, true, false, ColMajor, false, false, | 
|  | ColMajor, 1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, | 
|  | blocking); | 
|  | else if (UPLO(*uplo) == LO) | 
|  | Eigen::internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, true, false, ColMajor, false, false, | 
|  | ColMajor, 1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, | 
|  | blocking); | 
|  | else | 
|  | return; | 
|  | else if (SIDE(*side) == RIGHT) | 
|  | if (UPLO(*uplo) == UP) | 
|  | Eigen::internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, RowMajor, true, false, | 
|  | ColMajor, 1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, | 
|  | blocking); | 
|  | else if (UPLO(*uplo) == LO) | 
|  | Eigen::internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, ColMajor, true, false, | 
|  | ColMajor, 1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, | 
|  | blocking); | 
|  | else | 
|  | return; | 
|  | else | 
|  | return; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // c = alpha*a*a' + beta*c  for op = 'N'or'n' | 
|  | // c = alpha*a'*a + beta*c  for op = 'T'or't','C'or'c' | 
|  | EIGEN_BLAS_FUNC(syrk) | 
|  | (const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa, | 
|  | const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { | 
|  | //   std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " | 
|  | //   << *pbeta << " " << *ldc << "\n"; | 
|  | using Eigen::ColMajor; | 
|  | using Eigen::DenseIndex; | 
|  | using Eigen::Dynamic; | 
|  | using Eigen::Lower; | 
|  | using Eigen::RowMajor; | 
|  | using Eigen::Upper; | 
|  | #if !ISCOMPLEX | 
|  | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, | 
|  | DenseIndex, DenseIndex, const Scalar &, Eigen::internal::level3_blocking<Scalar, Scalar> &); | 
|  | static const functype func[8] = { | 
|  | // array index: NOTR  | (UP << 2) | 
|  | (Eigen::internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, | 
|  | Conj, ColMajor, 1, Upper>::run), | 
|  | // array index: TR    | (UP << 2) | 
|  | (Eigen::internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, | 
|  | Conj, ColMajor, 1, Upper>::run), | 
|  | // array index: ADJ   | (UP << 2) | 
|  | (Eigen::internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, | 
|  | false, ColMajor, 1, Upper>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LO << 2) | 
|  | (Eigen::internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, | 
|  | Conj, ColMajor, 1, Lower>::run), | 
|  | // array index: TR    | (LO << 2) | 
|  | (Eigen::internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, | 
|  | Conj, ColMajor, 1, Lower>::run), | 
|  | // array index: ADJ   | (LO << 2) | 
|  | (Eigen::internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, | 
|  | false, ColMajor, 1, Lower>::run), | 
|  | 0}; | 
|  | #endif | 
|  |  | 
|  | const Scalar *a = reinterpret_cast<const Scalar *>(pa); | 
|  | Scalar *c = reinterpret_cast<Scalar *>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); | 
|  | Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); | 
|  |  | 
|  | int info = 0; | 
|  | if (UPLO(*uplo) == INVALID) | 
|  | info = 1; | 
|  | else if (OP(*op) == INVALID || (ISCOMPLEX && OP(*op) == ADJ)) | 
|  | info = 2; | 
|  | else if (*n < 0) | 
|  | info = 3; | 
|  | else if (*k < 0) | 
|  | info = 4; | 
|  | else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k)) | 
|  | info = 7; | 
|  | else if (*ldc < std::max(1, *n)) | 
|  | info = 10; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "SYRK ", &info); | 
|  |  | 
|  | if (beta != Scalar(1)) { | 
|  | if (UPLO(*uplo) == UP) | 
|  | if (beta == Scalar(0)) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; | 
|  | else if (beta == Scalar(0)) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; | 
|  | } | 
|  |  | 
|  | if (*n == 0 || *k == 0) return; | 
|  |  | 
|  | #if ISCOMPLEX | 
|  | // FIXME add support for symmetric complex matrix | 
|  | if (UPLO(*uplo) == UP) { | 
|  | if (OP(*op) == NOTR) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() += | 
|  | alpha * matrix(a, *n, *k, *lda) * matrix(a, *n, *k, *lda).transpose(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() += | 
|  | alpha * matrix(a, *k, *n, *lda).transpose() * matrix(a, *k, *n, *lda); | 
|  | } else { | 
|  | if (OP(*op) == NOTR) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() += | 
|  | alpha * matrix(a, *n, *k, *lda) * matrix(a, *n, *k, *lda).transpose(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() += | 
|  | alpha * matrix(a, *k, *n, *lda).transpose() * matrix(a, *k, *n, *lda); | 
|  | } | 
|  | #else | 
|  | Eigen::internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*n, *n, *k, 1, | 
|  | false); | 
|  |  | 
|  | int code = OP(*op) | (UPLO(*uplo) << 2); | 
|  | func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // c = alpha*a*b' + alpha*b*a' + beta*c  for op = 'N'or'n' | 
|  | // c = alpha*a'*b + alpha*b'*a + beta*c  for op = 'T'or't' | 
|  | EIGEN_BLAS_FUNC(syr2k) | 
|  | (const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa, | 
|  | const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { | 
|  | const Scalar *a = reinterpret_cast<const Scalar *>(pa); | 
|  | const Scalar *b = reinterpret_cast<const Scalar *>(pb); | 
|  | Scalar *c = reinterpret_cast<Scalar *>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); | 
|  | Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); | 
|  |  | 
|  | //   std::cerr << "in syr2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " | 
|  | //   << *ldb << " " << beta << " " << *ldc << "\n"; | 
|  |  | 
|  | int info = 0; | 
|  | if (UPLO(*uplo) == INVALID) | 
|  | info = 1; | 
|  | else if (OP(*op) == INVALID || (ISCOMPLEX && OP(*op) == ADJ)) | 
|  | info = 2; | 
|  | else if (*n < 0) | 
|  | info = 3; | 
|  | else if (*k < 0) | 
|  | info = 4; | 
|  | else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k)) | 
|  | info = 7; | 
|  | else if (*ldb < std::max(1, (OP(*op) == NOTR) ? *n : *k)) | 
|  | info = 9; | 
|  | else if (*ldc < std::max(1, *n)) | 
|  | info = 12; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "SYR2K", &info); | 
|  |  | 
|  | using Eigen::Lower; | 
|  | using Eigen::Upper; | 
|  | if (beta != Scalar(1)) { | 
|  | if (UPLO(*uplo) == UP) | 
|  | if (beta == Scalar(0)) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; | 
|  | else if (beta == Scalar(0)) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; | 
|  | } | 
|  |  | 
|  | if (*k == 0) return; | 
|  |  | 
|  | if (OP(*op) == NOTR) { | 
|  | if (UPLO(*uplo) == UP) { | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() += | 
|  | alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).transpose() + | 
|  | alpha * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).transpose(); | 
|  | } else if (UPLO(*uplo) == LO) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() += | 
|  | alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).transpose() + | 
|  | alpha * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).transpose(); | 
|  | } else if (OP(*op) == TR || OP(*op) == ADJ) { | 
|  | if (UPLO(*uplo) == UP) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() += | 
|  | alpha * matrix(a, *k, *n, *lda).transpose() * matrix(b, *k, *n, *ldb) + | 
|  | alpha * matrix(b, *k, *n, *ldb).transpose() * matrix(a, *k, *n, *lda); | 
|  | else if (UPLO(*uplo) == LO) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() += | 
|  | alpha * matrix(a, *k, *n, *lda).transpose() * matrix(b, *k, *n, *ldb) + | 
|  | alpha * matrix(b, *k, *n, *ldb).transpose() * matrix(a, *k, *n, *lda); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if ISCOMPLEX | 
|  |  | 
|  | // c = alpha*a*b + beta*c  for side = 'L'or'l' | 
|  | // c = alpha*b*a + beta*c  for side = 'R'or'r | 
|  | EIGEN_BLAS_FUNC(hemm) | 
|  | (const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, const RealScalar *pa, | 
|  | const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { | 
|  | const Scalar *a = reinterpret_cast<const Scalar *>(pa); | 
|  | const Scalar *b = reinterpret_cast<const Scalar *>(pb); | 
|  | Scalar *c = reinterpret_cast<Scalar *>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); | 
|  | Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); | 
|  |  | 
|  | //   std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " | 
|  | //   << beta << " " << *ldc << "\n"; | 
|  |  | 
|  | int info = 0; | 
|  | if (SIDE(*side) == INVALID) | 
|  | info = 1; | 
|  | else if (UPLO(*uplo) == INVALID) | 
|  | info = 2; | 
|  | else if (*m < 0) | 
|  | info = 3; | 
|  | else if (*n < 0) | 
|  | info = 4; | 
|  | else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n)) | 
|  | info = 7; | 
|  | else if (*ldb < std::max(1, *m)) | 
|  | info = 9; | 
|  | else if (*ldc < std::max(1, *m)) | 
|  | info = 12; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "HEMM ", &info); | 
|  |  | 
|  | if (beta == Scalar(0)) | 
|  | matrix(c, *m, *n, *ldc).setZero(); | 
|  | else if (beta != Scalar(1)) | 
|  | matrix(c, *m, *n, *ldc) *= beta; | 
|  |  | 
|  | if (*m == 0 || *n == 0) return; | 
|  |  | 
|  | using Eigen::ColMajor; | 
|  | using Eigen::DenseIndex; | 
|  | using Eigen::Dynamic; | 
|  | using Eigen::RowMajor; | 
|  | using Eigen::Upper; | 
|  |  | 
|  | int size = (SIDE(*side) == LEFT) ? (*m) : (*n); | 
|  | Eigen::internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, size, 1, | 
|  | false); | 
|  |  | 
|  | if (SIDE(*side) == LEFT) { | 
|  | if (UPLO(*uplo) == UP) | 
|  | Eigen::internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor, true, Conj, ColMajor, false, false, | 
|  | ColMajor, 1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, | 
|  | blocking); | 
|  | else if (UPLO(*uplo) == LO) | 
|  | Eigen::internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, true, false, ColMajor, false, false, | 
|  | ColMajor, 1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, | 
|  | blocking); | 
|  | else | 
|  | return; | 
|  | } else if (SIDE(*side) == RIGHT) { | 
|  | if (UPLO(*uplo) == UP) | 
|  | matrix(c, *m, *n, *ldc) += | 
|  | alpha * matrix(b, *m, *n, *ldb) * | 
|  | matrix(a, *n, *n, *lda) | 
|  | .selfadjointView<Upper>(); /*internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, | 
|  | RowMajor,true,Conj,  ColMajor, 1> | 
|  | ::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);*/ | 
|  | else if (UPLO(*uplo) == LO) | 
|  | Eigen::internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, ColMajor, true, false, | 
|  | ColMajor, 1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, | 
|  | blocking); | 
|  | else | 
|  | return; | 
|  | } else { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // c = alpha*a*conj(a') + beta*c  for op = 'N'or'n' | 
|  | // c = alpha*conj(a')*a + beta*c  for op  = 'C'or'c' | 
|  | EIGEN_BLAS_FUNC(herk) | 
|  | (const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa, | 
|  | const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { | 
|  | //   std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " | 
|  | //   << *pbeta << " " << *ldc << "\n"; | 
|  | using Eigen::ColMajor; | 
|  | using Eigen::DenseIndex; | 
|  | using Eigen::Dynamic; | 
|  | using Eigen::Lower; | 
|  | using Eigen::RowMajor; | 
|  | using Eigen::StrictlyLower; | 
|  | using Eigen::StrictlyUpper; | 
|  | using Eigen::Upper; | 
|  | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, | 
|  | DenseIndex, DenseIndex, const Scalar &, Eigen::internal::level3_blocking<Scalar, Scalar> &); | 
|  | static const functype func[8] = { | 
|  | // array index: NOTR  | (UP << 2) | 
|  | (Eigen::internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, | 
|  | Conj, ColMajor, 1, Upper>::run), | 
|  | 0, | 
|  | // array index: ADJ   | (UP << 2) | 
|  | (Eigen::internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, | 
|  | false, ColMajor, 1, Upper>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LO << 2) | 
|  | (Eigen::internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, | 
|  | Conj, ColMajor, 1, Lower>::run), | 
|  | 0, | 
|  | // array index: ADJ   | (LO << 2) | 
|  | (Eigen::internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, | 
|  | false, ColMajor, 1, Lower>::run), | 
|  | 0}; | 
|  |  | 
|  | const Scalar *a = reinterpret_cast<const Scalar *>(pa); | 
|  | Scalar *c = reinterpret_cast<Scalar *>(pc); | 
|  | RealScalar alpha = *palpha; | 
|  | RealScalar beta = *pbeta; | 
|  |  | 
|  | //   std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << | 
|  | //   beta << " " << *ldc << "\n"; | 
|  |  | 
|  | int info = 0; | 
|  | if (UPLO(*uplo) == INVALID) | 
|  | info = 1; | 
|  | else if ((OP(*op) == INVALID) || (OP(*op) == TR)) | 
|  | info = 2; | 
|  | else if (*n < 0) | 
|  | info = 3; | 
|  | else if (*k < 0) | 
|  | info = 4; | 
|  | else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k)) | 
|  | info = 7; | 
|  | else if (*ldc < std::max(1, *n)) | 
|  | info = 10; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "HERK ", &info); | 
|  |  | 
|  | int code = OP(*op) | (UPLO(*uplo) << 2); | 
|  |  | 
|  | if (beta != RealScalar(1)) { | 
|  | if (UPLO(*uplo) == UP) | 
|  | if (beta == Scalar(0)) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; | 
|  | else if (beta == Scalar(0)) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; | 
|  |  | 
|  | if (beta != Scalar(0)) { | 
|  | matrix(c, *n, *n, *ldc).diagonal().real() *= beta; | 
|  | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (*k > 0 && alpha != RealScalar(0)) { | 
|  | Eigen::internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*n, *n, *k, 1, | 
|  | false); | 
|  | func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking); | 
|  | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c,  for op = 'N'or'n' | 
|  | // c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c,  for op = 'C'or'c' | 
|  | EIGEN_BLAS_FUNC(her2k) | 
|  | (const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa, | 
|  | const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { | 
|  | const Scalar *a = reinterpret_cast<const Scalar *>(pa); | 
|  | const Scalar *b = reinterpret_cast<const Scalar *>(pb); | 
|  | Scalar *c = reinterpret_cast<Scalar *>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); | 
|  | RealScalar beta = *pbeta; | 
|  |  | 
|  | //   std::cerr << "in her2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " | 
|  | //   << *ldb << " " << beta << " " << *ldc << "\n"; | 
|  |  | 
|  | int info = 0; | 
|  | if (UPLO(*uplo) == INVALID) | 
|  | info = 1; | 
|  | else if ((OP(*op) == INVALID) || (OP(*op) == TR)) | 
|  | info = 2; | 
|  | else if (*n < 0) | 
|  | info = 3; | 
|  | else if (*k < 0) | 
|  | info = 4; | 
|  | else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k)) | 
|  | info = 7; | 
|  | else if (*ldb < std::max(1, (OP(*op) == NOTR) ? *n : *k)) | 
|  | info = 9; | 
|  | else if (*ldc < std::max(1, *n)) | 
|  | info = 12; | 
|  | if (info) return xerbla_(SCALAR_SUFFIX_UP "HER2K", &info); | 
|  |  | 
|  | using Eigen::Lower; | 
|  | using Eigen::StrictlyLower; | 
|  | using Eigen::StrictlyUpper; | 
|  | using Eigen::Upper; | 
|  | if (beta != RealScalar(1)) { | 
|  | if (UPLO(*uplo) == UP) | 
|  | if (beta == Scalar(0)) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; | 
|  | else if (beta == Scalar(0)) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; | 
|  |  | 
|  | if (beta != Scalar(0)) { | 
|  | matrix(c, *n, *n, *ldc).diagonal().real() *= beta; | 
|  | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | 
|  | } | 
|  | } else if (*k > 0 && alpha != Scalar(0)) | 
|  | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | 
|  |  | 
|  | if (*k == 0) return; | 
|  |  | 
|  | if (OP(*op) == NOTR) { | 
|  | if (UPLO(*uplo) == UP) { | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() += | 
|  | alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).adjoint() + | 
|  | Eigen::numext::conj(alpha) * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).adjoint(); | 
|  | } else if (UPLO(*uplo) == LO) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() += | 
|  | alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).adjoint() + | 
|  | Eigen::numext::conj(alpha) * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).adjoint(); | 
|  | } else if (OP(*op) == ADJ) { | 
|  | if (UPLO(*uplo) == UP) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() += | 
|  | alpha * matrix(a, *k, *n, *lda).adjoint() * matrix(b, *k, *n, *ldb) + | 
|  | Eigen::numext::conj(alpha) * matrix(b, *k, *n, *ldb).adjoint() * matrix(a, *k, *n, *lda); | 
|  | else if (UPLO(*uplo) == LO) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() += | 
|  | alpha * matrix(a, *k, *n, *lda).adjoint() * matrix(b, *k, *n, *ldb) + | 
|  | Eigen::numext::conj(alpha) * matrix(b, *k, *n, *ldb).adjoint() * matrix(a, *k, *n, *lda); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // ISCOMPLEX |