|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | template <typename Lhs, typename Rhs> | 
|  | const Product<Lhs, Rhs> prod(const Lhs& lhs, const Rhs& rhs) { | 
|  | return Product<Lhs, Rhs>(lhs, rhs); | 
|  | } | 
|  |  | 
|  | template <typename Lhs, typename Rhs> | 
|  | const Product<Lhs, Rhs, LazyProduct> lazyprod(const Lhs& lhs, const Rhs& rhs) { | 
|  | return Product<Lhs, Rhs, LazyProduct>(lhs, rhs); | 
|  | } | 
|  |  | 
|  | template <typename DstXprType, typename SrcXprType> | 
|  | EIGEN_STRONG_INLINE DstXprType& copy_using_evaluator(const EigenBase<DstXprType>& dst, const SrcXprType& src) { | 
|  | call_assignment(dst.const_cast_derived(), src.derived(), | 
|  | internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>()); | 
|  | return dst.const_cast_derived(); | 
|  | } | 
|  |  | 
|  | template <typename DstXprType, template <typename> class StorageBase, typename SrcXprType> | 
|  | EIGEN_STRONG_INLINE const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, | 
|  | const SrcXprType& src) { | 
|  | call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>()); | 
|  | return dst.expression(); | 
|  | } | 
|  |  | 
|  | template <typename DstXprType, typename SrcXprType> | 
|  | EIGEN_STRONG_INLINE DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType>& dst, const SrcXprType& src) { | 
|  | #ifdef EIGEN_NO_AUTOMATIC_RESIZING | 
|  | eigen_assert((dst.size() == 0 || (IsVectorAtCompileTime ? (dst.size() == src.size()) | 
|  | : (dst.rows() == src.rows() && dst.cols() == src.cols()))) && | 
|  | "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); | 
|  | #else | 
|  | dst.const_cast_derived().resizeLike(src.derived()); | 
|  | #endif | 
|  |  | 
|  | call_assignment(dst.const_cast_derived(), src.derived(), | 
|  | internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>()); | 
|  | return dst.const_cast_derived(); | 
|  | } | 
|  |  | 
|  | template <typename DstXprType, typename SrcXprType> | 
|  | void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { | 
|  | typedef typename DstXprType::Scalar Scalar; | 
|  | call_assignment(const_cast<DstXprType&>(dst), src.derived(), | 
|  | internal::add_assign_op<Scalar, typename SrcXprType::Scalar>()); | 
|  | } | 
|  |  | 
|  | template <typename DstXprType, typename SrcXprType> | 
|  | void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { | 
|  | typedef typename DstXprType::Scalar Scalar; | 
|  | call_assignment(const_cast<DstXprType&>(dst), src.derived(), | 
|  | internal::sub_assign_op<Scalar, typename SrcXprType::Scalar>()); | 
|  | } | 
|  |  | 
|  | template <typename DstXprType, typename SrcXprType> | 
|  | void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { | 
|  | typedef typename DstXprType::Scalar Scalar; | 
|  | call_assignment(dst.const_cast_derived(), src.derived(), | 
|  | internal::mul_assign_op<Scalar, typename SrcXprType::Scalar>()); | 
|  | } | 
|  |  | 
|  | template <typename DstXprType, typename SrcXprType> | 
|  | void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) { | 
|  | typedef typename DstXprType::Scalar Scalar; | 
|  | call_assignment(dst.const_cast_derived(), src.derived(), | 
|  | internal::div_assign_op<Scalar, typename SrcXprType::Scalar>()); | 
|  | } | 
|  |  | 
|  | template <typename DstXprType, typename SrcXprType> | 
|  | void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src) { | 
|  | typedef typename DstXprType::Scalar Scalar; | 
|  | call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  | template <typename Dst, template <typename> class StorageBase, typename Src, typename Func> | 
|  | EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst, StorageBase>& dst, const Src& src, const Func& func) { | 
|  | call_assignment_no_alias(dst.expression(), src, func); | 
|  | } | 
|  |  | 
|  | template <typename Dst, template <typename> class StorageBase, typename Src, typename Func> | 
|  | EIGEN_DEVICE_FUNC void call_restricted_packet_assignment(const NoAlias<Dst, StorageBase>& dst, const Src& src, | 
|  | const Func& func) { | 
|  | call_restricted_packet_assignment_no_alias(dst.expression(), src, func); | 
|  | } | 
|  | }  // namespace internal | 
|  |  | 
|  | }  // namespace Eigen | 
|  |  | 
|  | template <typename XprType> | 
|  | long get_cost(const XprType&) { | 
|  | return Eigen::internal::evaluator<XprType>::CoeffReadCost; | 
|  | } | 
|  |  | 
|  | using namespace std; | 
|  |  | 
|  | #define VERIFY_IS_APPROX_EVALUATOR(DEST, EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST, (EXPR)), (EXPR).eval()); | 
|  | #define VERIFY_IS_APPROX_EVALUATOR2(DEST, EXPR, REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST, (EXPR)), (REF).eval()); | 
|  |  | 
|  | EIGEN_DECLARE_TEST(evaluators) { | 
|  | // Testing Matrix evaluator and Transpose | 
|  | Vector2d v = Vector2d::Random(); | 
|  | const Vector2d v_const(v); | 
|  | Vector2d v2; | 
|  | RowVector2d w; | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR(v2, v); | 
|  | VERIFY_IS_APPROX_EVALUATOR(v2, v_const); | 
|  |  | 
|  | // Testing Transpose | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, v.transpose());  // Transpose as rvalue | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose()); | 
|  |  | 
|  | copy_using_evaluator(w.transpose(), v);  // Transpose as lvalue | 
|  | VERIFY_IS_APPROX(w, v.transpose().eval()); | 
|  |  | 
|  | copy_using_evaluator(w.transpose(), v_const); | 
|  | VERIFY_IS_APPROX(w, v_const.transpose().eval()); | 
|  |  | 
|  | // Testing Array evaluator | 
|  | { | 
|  | ArrayXXf a(2, 3); | 
|  | ArrayXXf b(3, 2); | 
|  | a << 1, 2, 3, 4, 5, 6; | 
|  | const ArrayXXf a_const(a); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR(b, a.transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose()); | 
|  |  | 
|  | // Testing CwiseNullaryOp evaluator | 
|  | copy_using_evaluator(w, RowVector2d::Random()); | 
|  | VERIFY((w.array() >= -1).all() && (w.array() <= 1).all());  // not easy to test ... | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero()); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3)); | 
|  |  | 
|  | // mix CwiseNullaryOp and transpose | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose()); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test product expressions | 
|  | int s = internal::random<int>(1, 100); | 
|  | MatrixXf a(s, s), b(s, s), c(s, s), d(s, s); | 
|  | a.setRandom(); | 
|  | b.setRandom(); | 
|  | c.setRandom(); | 
|  | d.setRandom(); | 
|  | VERIFY_IS_APPROX_EVALUATOR(d, (a + b)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose()); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b), a * b); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a, b), a * b); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b) + c, a * b + c); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a, b), s * a * b); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b).transpose(), (a * b).transpose()); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a, b) + prod(b, c), a * b + b * c); | 
|  |  | 
|  | // check that prod works even with aliasing present | 
|  | c = a * a; | 
|  | copy_using_evaluator(a, prod(a, a)); | 
|  | VERIFY_IS_APPROX(a, c); | 
|  |  | 
|  | // check compound assignment of products | 
|  | d = c; | 
|  | add_assign_using_evaluator(c.noalias(), prod(a, b)); | 
|  | d.noalias() += a * b; | 
|  | VERIFY_IS_APPROX(c, d); | 
|  |  | 
|  | d = c; | 
|  | subtract_assign_using_evaluator(c.noalias(), prod(a, b)); | 
|  | d.noalias() -= a * b; | 
|  | VERIFY_IS_APPROX(c, d); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test product with all possible sizes | 
|  | int s = internal::random<int>(1, 100); | 
|  | Matrix<float, 1, 1> m11, res11; | 
|  | m11.setRandom(1, 1); | 
|  | Matrix<float, 1, 4> m14, res14; | 
|  | m14.setRandom(1, 4); | 
|  | Matrix<float, 1, Dynamic> m1X, res1X; | 
|  | m1X.setRandom(1, s); | 
|  | Matrix<float, 4, 1> m41, res41; | 
|  | m41.setRandom(4, 1); | 
|  | Matrix<float, 4, 4> m44, res44; | 
|  | m44.setRandom(4, 4); | 
|  | Matrix<float, 4, Dynamic> m4X, res4X; | 
|  | m4X.setRandom(4, s); | 
|  | Matrix<float, Dynamic, 1> mX1, resX1; | 
|  | mX1.setRandom(s, 1); | 
|  | Matrix<float, Dynamic, 4> mX4, resX4; | 
|  | mX4.setRandom(s, 4); | 
|  | Matrix<float, Dynamic, Dynamic> mXX, resXX; | 
|  | mXX.setRandom(s, s); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11, m11), m11 * m11); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14, m41), m14 * m41); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X, mX1), m1X * mX1); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11, m14), m11 * m14); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14, m44), m14 * m44); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X, mX4), m1X * mX4); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11, m1X), m11 * m1X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14, m4X), m14 * m4X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X, mXX), m1X * mXX); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41, m11), m41 * m11); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44, m41), m44 * m41); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X, mX1), m4X * mX1); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41, m14), m41 * m14); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44, m44), m44 * m44); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X, mX4), m4X * mX4); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41, m1X), m41 * m1X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44, m4X), m44 * m4X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X, mXX), m4X * mXX); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1, m11), mX1 * m11); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4, m41), mX4 * m41); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX, mX1), mXX * mX1); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1, m14), mX1 * m14); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4, m44), mX4 * m44); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX, mX4), mXX * mX4); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1, m1X), mX1 * m1X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4, m4X), mX4 * m4X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX, mXX), mXX * mXX); | 
|  | } | 
|  |  | 
|  | { | 
|  | ArrayXXf a(2, 3); | 
|  | ArrayXXf b(3, 2); | 
|  | a << 1, 2, 3, 4, 5, 6; | 
|  | const ArrayXXf a_const(a); | 
|  |  | 
|  | // this does not work because Random is eval-before-nested: | 
|  | // copy_using_evaluator(w, Vector2d::Random().transpose()); | 
|  |  | 
|  | // test CwiseUnaryOp | 
|  | VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v); | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose()); | 
|  |  | 
|  | // test CwiseBinaryOp | 
|  | VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3))); | 
|  |  | 
|  | // dynamic matrices and arrays | 
|  | MatrixXd mat1(6, 6), mat2(6, 6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6, 6)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); | 
|  | copy_using_evaluator(mat2.transpose(), mat1); | 
|  | VERIFY_IS_APPROX(mat2.transpose(), mat1); | 
|  |  | 
|  | ArrayXXd arr1(6, 6), arr2(6, 6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6, 6, 3.0)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); | 
|  |  | 
|  | // test automatic resizing | 
|  | mat2.resize(3, 3); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); | 
|  | arr2.resize(9, 9); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); | 
|  |  | 
|  | // test direct traversal | 
|  | Matrix3f m3; | 
|  | Array33f a3; | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity());  // matrix, nullary | 
|  | // TODO: find a way to test direct traversal with array | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose());              // transpose | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity());                                  // unary | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero());                   // binary | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3.block(0, 0, 2, 2), Matrix3f::Identity().block(1, 1, 2, 2));  // block | 
|  |  | 
|  | // test linear traversal | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero());                          // matrix, nullary | 
|  | VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero());                          // array | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose());  // transpose | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero());                      // unary | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3);                     // binary | 
|  |  | 
|  | // test inner vectorization | 
|  | Matrix4f m4, m4src = Matrix4f::Random(); | 
|  | Array44f a4, a4src = Matrix4f::Random(); | 
|  | VERIFY_IS_APPROX_EVALUATOR(m4, m4src);                          // matrix | 
|  | VERIFY_IS_APPROX_EVALUATOR(a4, a4src);                          // array | 
|  | VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose());  // transpose | 
|  | // TODO: find out why Matrix4f::Zero() does not allow inner vectorization | 
|  | VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src);      // unary | 
|  | VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src);  // binary | 
|  |  | 
|  | // test linear vectorization | 
|  | MatrixXf mX(6, 6), mXsrc = MatrixXf::Random(6, 6); | 
|  | ArrayXXf aX(6, 6), aXsrc = ArrayXXf::Random(6, 6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc);                          // matrix | 
|  | VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc);                          // array | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose());  // transpose | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6, 6));           // nullary | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc);                      // unary | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc);                  // binary | 
|  |  | 
|  | // test blocks and slice vectorization | 
|  | VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4, 4>(1, 0))); | 
|  | VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6)); | 
|  |  | 
|  | Matrix4f m4ref = m4; | 
|  | copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2)); | 
|  | m4ref.block(1, 1, 2, 3) = m3.bottomRows(2); | 
|  | VERIFY_IS_APPROX(m4, m4ref); | 
|  |  | 
|  | mX.setIdentity(20, 20); | 
|  | MatrixXf mXref = MatrixXf::Identity(20, 20); | 
|  | mXsrc = MatrixXf::Random(9, 12); | 
|  | copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc); | 
|  | mXref.block(4, 4, 9, 12) = mXsrc; | 
|  | VERIFY_IS_APPROX(mX, mXref); | 
|  |  | 
|  | // test Map | 
|  | const float raw[3] = {1, 2, 3}; | 
|  | float buffer[3] = {0, 0, 0}; | 
|  | Vector3f v3; | 
|  | Array3f a3f; | 
|  | VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw)); | 
|  | Vector3f::Map(buffer) = 2 * v3; | 
|  | VERIFY(buffer[0] == 2); | 
|  | VERIFY(buffer[1] == 4); | 
|  | VERIFY(buffer[2] == 6); | 
|  |  | 
|  | // test CwiseUnaryView | 
|  | mat1.setRandom(); | 
|  | mat2.setIdentity(); | 
|  | MatrixXcd matXcd(6, 6), matXcd_ref(6, 6); | 
|  | copy_using_evaluator(matXcd.real(), mat1); | 
|  | copy_using_evaluator(matXcd.imag(), mat2); | 
|  | matXcd_ref.real() = mat1; | 
|  | matXcd_ref.imag() = mat2; | 
|  | VERIFY_IS_APPROX(matXcd, matXcd_ref); | 
|  |  | 
|  | // test Select | 
|  | VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc)); | 
|  |  | 
|  | // test Replicate | 
|  | mXsrc = MatrixXf::Random(6, 6); | 
|  | VectorXf vX = VectorXf::Random(6); | 
|  | mX.resize(6, 6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX); | 
|  | matXcd.resize(12, 12); | 
|  | VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2, 2)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2, 2>())); | 
|  |  | 
|  | // test partial reductions | 
|  | VectorXd vec1(6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose()); | 
|  |  | 
|  | // test MatrixWrapper and ArrayWrapper | 
|  | mat1.setRandom(6, 6); | 
|  | arr1.setRandom(6, 6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2); | 
|  | mat2.array() = arr1 * arr1; | 
|  | VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix()); | 
|  | arr2.matrix() = MatrixXd::Identity(6, 6); | 
|  | VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6, 6).array()); | 
|  |  | 
|  | // test Reverse | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse()); | 
|  | arr2.reverse() = arr1; | 
|  | VERIFY_IS_APPROX(arr2, arr1.reverse()); | 
|  | mat2.array() = mat1.array().reverse(); | 
|  | VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse()); | 
|  |  | 
|  | // test Diagonal | 
|  | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal()); | 
|  | vec1.resize(5); | 
|  | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>()); | 
|  | vec1.setRandom(); | 
|  |  | 
|  | mat2 = mat1; | 
|  | copy_using_evaluator(mat1.diagonal(1), vec1); | 
|  | mat2.diagonal(1) = vec1; | 
|  | VERIFY_IS_APPROX(mat1, mat2); | 
|  |  | 
|  | copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1)); | 
|  | mat2.diagonal<-1>() = mat2.diagonal(1); | 
|  | VERIFY_IS_APPROX(mat1, mat2); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test swapping | 
|  | MatrixXd mat1, mat2, mat1ref, mat2ref; | 
|  | mat1ref = mat1 = MatrixXd::Random(6, 6); | 
|  | mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6); | 
|  | swap_using_evaluator(mat1, mat2); | 
|  | mat1ref.swap(mat2ref); | 
|  | VERIFY_IS_APPROX(mat1, mat1ref); | 
|  | VERIFY_IS_APPROX(mat2, mat2ref); | 
|  |  | 
|  | swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3)); | 
|  | mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3)); | 
|  | VERIFY_IS_APPROX(mat1, mat1ref); | 
|  | VERIFY_IS_APPROX(mat2, mat2ref); | 
|  |  | 
|  | swap_using_evaluator(mat1.row(2), mat2.col(3).transpose()); | 
|  | mat1.row(2).swap(mat2.col(3).transpose()); | 
|  | VERIFY_IS_APPROX(mat1, mat1ref); | 
|  | VERIFY_IS_APPROX(mat2, mat2ref); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test compound assignment | 
|  | const Matrix4d mat_const = Matrix4d::Random(); | 
|  | Matrix4d mat, mat_ref; | 
|  | mat = mat_ref = Matrix4d::Identity(); | 
|  | add_assign_using_evaluator(mat, mat_const); | 
|  | mat_ref += mat_const; | 
|  | VERIFY_IS_APPROX(mat, mat_ref); | 
|  |  | 
|  | subtract_assign_using_evaluator(mat.row(1), 2 * mat.row(2)); | 
|  | mat_ref.row(1) -= 2 * mat_ref.row(2); | 
|  | VERIFY_IS_APPROX(mat, mat_ref); | 
|  |  | 
|  | const ArrayXXf arr_const = ArrayXXf::Random(5, 3); | 
|  | ArrayXXf arr, arr_ref; | 
|  | arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5); | 
|  | multiply_assign_using_evaluator(arr, arr_const); | 
|  | arr_ref *= arr_const; | 
|  | VERIFY_IS_APPROX(arr, arr_ref); | 
|  |  | 
|  | divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1); | 
|  | arr_ref.row(1) /= (arr_ref.row(2) + 1); | 
|  | VERIFY_IS_APPROX(arr, arr_ref); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test triangular shapes | 
|  | MatrixXd A = MatrixXd::Random(6, 6), B(6, 6), C(6, 6), D(6, 6); | 
|  | A.setRandom(); | 
|  | B.setRandom(); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>())); | 
|  |  | 
|  | A.setRandom(); | 
|  | B.setRandom(); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>())); | 
|  |  | 
|  | A.setRandom(); | 
|  | B.setRandom(); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>())); | 
|  |  | 
|  | A.setRandom(); | 
|  | B.setRandom(); | 
|  | C = B; | 
|  | C.triangularView<Upper>() = A; | 
|  | copy_using_evaluator(B.triangularView<Upper>(), A); | 
|  | VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)"); | 
|  |  | 
|  | A.setRandom(); | 
|  | B.setRandom(); | 
|  | C = B; | 
|  | C.triangularView<Lower>() = A.triangularView<Lower>(); | 
|  | copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>()); | 
|  | VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())"); | 
|  |  | 
|  | A.setRandom(); | 
|  | B.setRandom(); | 
|  | C = B; | 
|  | C.triangularView<Lower>() = A.triangularView<Upper>().transpose(); | 
|  | copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose()); | 
|  | VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())"); | 
|  |  | 
|  | A.setRandom(); | 
|  | B.setRandom(); | 
|  | C = B; | 
|  | D = A; | 
|  | C.triangularView<Upper>().swap(D.triangularView<Upper>()); | 
|  | swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>()); | 
|  | VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())"); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(), A), MatrixXd(A.triangularView<Upper>() * A)); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(), A), MatrixXd(A.selfadjointView<Upper>() * A)); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test diagonal shapes | 
|  | VectorXd d = VectorXd::Random(6); | 
|  | MatrixXd A = MatrixXd::Random(6, 6), B(6, 6); | 
|  | A.setRandom(); | 
|  | B.setRandom(); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(), A), MatrixXd(d.asDiagonal() * A)); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A, d.asDiagonal()), MatrixXd(A * d.asDiagonal())); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test CoeffReadCost | 
|  | Matrix4d a, b; | 
|  | VERIFY_IS_EQUAL(get_cost(a), 1); | 
|  | VERIFY_IS_EQUAL(get_cost(a + b), 3); | 
|  | VERIFY_IS_EQUAL(get_cost(2 * a + b), 4); | 
|  | VERIFY_IS_EQUAL(get_cost(a * b), 1); | 
|  | VERIFY_IS_EQUAL(get_cost(a.lazyProduct(b)), 15); | 
|  | VERIFY_IS_EQUAL(get_cost(a * (a * b)), 1); | 
|  | VERIFY_IS_EQUAL(get_cost(a.lazyProduct(a * b)), 15); | 
|  | VERIFY_IS_EQUAL(get_cost(a * (a + b)), 1); | 
|  | VERIFY_IS_EQUAL(get_cost(a.lazyProduct(a + b)), 15); | 
|  | } | 
|  |  | 
|  | // regression test for PR 544 and bug 1622 (introduced in #71609c4) | 
|  | { | 
|  | // test restricted_packet_assignment with an unaligned destination | 
|  | const size_t M = 2; | 
|  | const size_t K = 2; | 
|  | const size_t N = 5; | 
|  | float* destMem = new float[(M * N) + 1]; | 
|  | // In case of no alignment, avoid division by zero. | 
|  | constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1); | 
|  | float* dest = (std::uintptr_t(destMem) % alignment) == 0 ? destMem + 1 : destMem; | 
|  |  | 
|  | const Matrix<float, Dynamic, Dynamic, RowMajor> a = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(M, K); | 
|  | const Matrix<float, Dynamic, Dynamic, RowMajor> b = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(K, N); | 
|  |  | 
|  | Map<Matrix<float, Dynamic, Dynamic, RowMajor> > z(dest, M, N); | 
|  | ; | 
|  | Product<Matrix<float, Dynamic, Dynamic, RowMajor>, Matrix<float, Dynamic, Dynamic, RowMajor>, LazyProduct> tmp(a, | 
|  | b); | 
|  | internal::call_restricted_packet_assignment(z.noalias(), tmp.derived(), internal::assign_op<float, float>()); | 
|  |  | 
|  | VERIFY_IS_APPROX(z, a * b); | 
|  | delete[] destMem; | 
|  | } | 
|  | } |