|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/SVD> | 
|  | #include "AnnoyingScalar.h" | 
|  |  | 
|  | template <typename T> | 
|  | T bounded_acos(T v) { | 
|  | using std::acos; | 
|  | using std::max; | 
|  | using std::min; | 
|  | return acos((max)(T(-1), (min)(v, T(1)))); | 
|  | } | 
|  |  | 
|  | template <typename QuatType> | 
|  | void check_slerp(const QuatType& q0, const QuatType& q1) { | 
|  | using std::abs; | 
|  | typedef typename QuatType::Scalar Scalar; | 
|  | typedef AngleAxis<Scalar> AA; | 
|  |  | 
|  | Scalar largeEps = test_precision<Scalar>(); | 
|  |  | 
|  | Scalar theta_tot = AA(q1 * q0.inverse()).angle(); | 
|  | if (theta_tot > Scalar(EIGEN_PI)) theta_tot = Scalar(2.) * Scalar(EIGEN_PI) - theta_tot; | 
|  | for (Scalar t = 0; t <= Scalar(1.001); t += Scalar(0.1)) { | 
|  | QuatType q = q0.slerp(t, q1); | 
|  | Scalar theta = AA(q * q0.inverse()).angle(); | 
|  | VERIFY(abs(q.norm() - 1) < largeEps); | 
|  | if (theta_tot == 0) | 
|  | VERIFY(theta_tot == 0); | 
|  | else | 
|  | VERIFY(abs(theta - t * theta_tot) < largeEps); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Options> | 
|  | void quaternion(void) { | 
|  | /* this test covers the following files: | 
|  | Quaternion.h | 
|  | */ | 
|  | using std::abs; | 
|  | typedef Matrix<Scalar, 3, 1> Vector3; | 
|  | typedef Matrix<Scalar, 3, 3> Matrix3; | 
|  | typedef Quaternion<Scalar, Options> Quaternionx; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  |  | 
|  | Scalar largeEps = test_precision<Scalar>(); | 
|  | if (internal::is_same<Scalar, float>::value) largeEps = Scalar(1e-3); | 
|  |  | 
|  | Scalar eps = internal::random<Scalar>() * Scalar(1e-2); | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(), v2 = Vector3::Random(), v3 = Vector3::Random(); | 
|  |  | 
|  | Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)), | 
|  | b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
|  |  | 
|  | // Quaternion: Identity(), setIdentity(); | 
|  | Quaternionx q1, q2; | 
|  | q2.setIdentity(); | 
|  | VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); | 
|  | q1.coeffs().setRandom(); | 
|  | VERIFY_IS_APPROX(q1.coeffs(), (q1 * q2).coeffs()); | 
|  |  | 
|  | #ifndef EIGEN_NO_IO | 
|  | // Printing | 
|  | std::ostringstream ss; | 
|  | ss << q2; | 
|  | VERIFY(ss.str() == "0i + 0j + 0k + 1"); | 
|  | #endif | 
|  |  | 
|  | // concatenation | 
|  | q1 *= q2; | 
|  |  | 
|  | q1 = AngleAxisx(a, v0.normalized()); | 
|  | q2 = AngleAxisx(a, v1.normalized()); | 
|  |  | 
|  | // angular distance | 
|  | Scalar refangle = abs(AngleAxisx(q1.inverse() * q2).angle()); | 
|  | if (refangle > Scalar(EIGEN_PI)) refangle = Scalar(2) * Scalar(EIGEN_PI) - refangle; | 
|  |  | 
|  | if ((q1.coeffs() - q2.coeffs()).norm() > Scalar(10) * largeEps) { | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1)); | 
|  | } | 
|  |  | 
|  | // Action on vector by the q v q* formula | 
|  | VERIFY_IS_APPROX(q1 * v2, (q1 * Quaternionx(Scalar(0), v2) * q1.inverse()).vec()); | 
|  | VERIFY_IS_APPROX(q1.inverse() * v2, (q1.inverse() * Quaternionx(Scalar(0), v2) * q1).vec()); | 
|  |  | 
|  | // rotation matrix conversion | 
|  | VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); | 
|  | VERIFY_IS_APPROX(q1 * q2 * v2, q1.toRotationMatrix() * q2.toRotationMatrix() * v2); | 
|  |  | 
|  | VERIFY((q2 * q1).isApprox(q1 * q2, largeEps) || | 
|  | !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); | 
|  |  | 
|  | q2 = q1.toRotationMatrix(); | 
|  | VERIFY_IS_APPROX(q1 * v1, q2 * v1); | 
|  |  | 
|  | Matrix3 rot1(q1); | 
|  | VERIFY_IS_APPROX(q1 * v1, rot1 * v1); | 
|  | Quaternionx q3(rot1.transpose() * rot1); | 
|  | VERIFY_IS_APPROX(q3 * v1, v1); | 
|  |  | 
|  | // angle-axis conversion | 
|  | AngleAxisx aa = AngleAxisx(q1); | 
|  | VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | 
|  |  | 
|  | // Do not execute the test if the rotation angle is almost zero, or | 
|  | // the rotation axis and v1 are almost parallel. | 
|  | if (abs(aa.angle()) > Scalar(5) * test_precision<Scalar>() && (aa.axis() - v1.normalized()).norm() < Scalar(1.99) && | 
|  | (aa.axis() + v1.normalized()).norm() < Scalar(1.99)) { | 
|  | VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle() * 2, aa.axis())) * v1); | 
|  | } | 
|  |  | 
|  | // from two vector creation | 
|  | VERIFY_IS_APPROX(v2.normalized(), (q2.setFromTwoVectors(v1, v2) * v1).normalized()); | 
|  | VERIFY_IS_APPROX(v1.normalized(), (q2.setFromTwoVectors(v1, v1) * v1).normalized()); | 
|  | VERIFY_IS_APPROX(-v1.normalized(), (q2.setFromTwoVectors(v1, -v1) * v1).normalized()); | 
|  | if (internal::is_same<Scalar, double>::value) { | 
|  | v3 = (v1.array() + eps).matrix(); | 
|  | VERIFY_IS_APPROX(v3.normalized(), (q2.setFromTwoVectors(v1, v3) * v1).normalized()); | 
|  | VERIFY_IS_APPROX(-v3.normalized(), (q2.setFromTwoVectors(v1, -v3) * v1).normalized()); | 
|  | } | 
|  |  | 
|  | // from two vector creation static function | 
|  | VERIFY_IS_APPROX(v2.normalized(), (Quaternionx::FromTwoVectors(v1, v2) * v1).normalized()); | 
|  | VERIFY_IS_APPROX(v1.normalized(), (Quaternionx::FromTwoVectors(v1, v1) * v1).normalized()); | 
|  | VERIFY_IS_APPROX(-v1.normalized(), (Quaternionx::FromTwoVectors(v1, -v1) * v1).normalized()); | 
|  | if (internal::is_same<Scalar, double>::value) { | 
|  | v3 = (v1.array() + eps).matrix(); | 
|  | VERIFY_IS_APPROX(v3.normalized(), (Quaternionx::FromTwoVectors(v1, v3) * v1).normalized()); | 
|  | VERIFY_IS_APPROX(-v3.normalized(), (Quaternionx::FromTwoVectors(v1, -v3) * v1).normalized()); | 
|  | } | 
|  |  | 
|  | // inverse and conjugate | 
|  | VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); | 
|  |  | 
|  | // test casting | 
|  | Quaternion<float> q1f = q1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(q1f.template cast<Scalar>(), q1); | 
|  | Quaternion<double> q1d = q1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(q1d.template cast<Scalar>(), q1); | 
|  |  | 
|  | // test bug 369 - improper alignment. | 
|  | Quaternionx* q = new Quaternionx; | 
|  | delete q; | 
|  |  | 
|  | q1 = Quaternionx::UnitRandom(); | 
|  | q2 = Quaternionx::UnitRandom(); | 
|  | check_slerp(q1, q2); | 
|  |  | 
|  | q1 = AngleAxisx(b, v1.normalized()); | 
|  | q2 = AngleAxisx(b + Scalar(EIGEN_PI), v1.normalized()); | 
|  | check_slerp(q1, q2); | 
|  |  | 
|  | q1 = AngleAxisx(b, v1.normalized()); | 
|  | q2 = AngleAxisx(-b, -v1.normalized()); | 
|  | check_slerp(q1, q2); | 
|  |  | 
|  | q1 = Quaternionx::UnitRandom(); | 
|  | q2.coeffs() = -q1.coeffs(); | 
|  | check_slerp(q1, q2); | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void mapQuaternion(void) { | 
|  | typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; | 
|  | typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA; | 
|  | typedef Map<Quaternion<Scalar> > MQuaternionUA; | 
|  | typedef Map<const Quaternion<Scalar> > MCQuaternionUA; | 
|  | typedef Quaternion<Scalar> Quaternionx; | 
|  | typedef Matrix<Scalar, 3, 1> Vector3; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(); | 
|  | Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
|  |  | 
|  | EIGEN_ALIGN_MAX Scalar array1[4]; | 
|  | EIGEN_ALIGN_MAX Scalar array2[4]; | 
|  | EIGEN_ALIGN_MAX Scalar array3[4 + 1]; | 
|  | Scalar* array3unaligned = array3 + 1; | 
|  |  | 
|  | MQuaternionA mq1(array1); | 
|  | MCQuaternionA mcq1(array1); | 
|  | MQuaternionA mq2(array2); | 
|  | MQuaternionUA mq3(array3unaligned); | 
|  | MCQuaternionUA mcq3(array3unaligned); | 
|  |  | 
|  | //  std::cerr << array1 << " " << array2 << " " << array3 << "\n"; | 
|  | mq1 = AngleAxisx(a, v0.normalized()); | 
|  | mq2 = mq1; | 
|  | mq3 = mq1; | 
|  |  | 
|  | Quaternionx q1 = mq1; | 
|  | Quaternionx q2 = mq2; | 
|  | Quaternionx q3 = mq3; | 
|  | Quaternionx q4 = MCQuaternionUA(array3unaligned); | 
|  |  | 
|  | VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); | 
|  | VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); | 
|  | VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); | 
|  |  | 
|  | VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); | 
|  |  | 
|  | VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1); | 
|  |  | 
|  | VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1); | 
|  |  | 
|  | VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1); | 
|  | VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1); | 
|  |  | 
|  | VERIFY_IS_APPROX(mq1 * mq2, q1 * q2); | 
|  | VERIFY_IS_APPROX(mq3 * mq2, q3 * q2); | 
|  | VERIFY_IS_APPROX(mcq1 * mq2, q1 * q2); | 
|  | VERIFY_IS_APPROX(mcq3 * mq2, q3 * q2); | 
|  |  | 
|  | // Bug 1461, compilation issue with Map<const Quat>::w(), and other reference/constness checks: | 
|  | VERIFY_IS_APPROX(mcq3.coeffs().x() + mcq3.coeffs().y() + mcq3.coeffs().z() + mcq3.coeffs().w(), mcq3.coeffs().sum()); | 
|  | VERIFY_IS_APPROX(mcq3.x() + mcq3.y() + mcq3.z() + mcq3.w(), mcq3.coeffs().sum()); | 
|  | mq3.w() = 1; | 
|  | const Quaternionx& cq3(q3); | 
|  | VERIFY(&cq3.x() == &q3.x()); | 
|  | const MQuaternionUA& cmq3(mq3); | 
|  | VERIFY(&cmq3.x() == &mq3.x()); | 
|  | // FIXME the following should be ok. The problem is that currently the LValueBit flag | 
|  | // is used to determine whether we can return a coeff by reference or not, which is not enough for Map<const ...>. | 
|  | // const MCQuaternionUA& cmcq3(mcq3); | 
|  | // VERIFY( &cmcq3.x() == &mcq3.x() ); | 
|  |  | 
|  | // test cast | 
|  | { | 
|  | Quaternion<float> q1f = mq1.template cast<float>(); | 
|  | VERIFY_IS_APPROX(q1f.template cast<Scalar>(), mq1); | 
|  | Quaternion<double> q1d = mq1.template cast<double>(); | 
|  | VERIFY_IS_APPROX(q1d.template cast<Scalar>(), mq1); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void quaternionAlignment(void) { | 
|  | typedef Quaternion<Scalar, AutoAlign> QuaternionA; | 
|  | typedef Quaternion<Scalar, DontAlign> QuaternionUA; | 
|  |  | 
|  | EIGEN_ALIGN_MAX Scalar array1[4]; | 
|  | EIGEN_ALIGN_MAX Scalar array2[4]; | 
|  | EIGEN_ALIGN_MAX Scalar array3[4 + 1]; | 
|  | Scalar* arrayunaligned = array3 + 1; | 
|  |  | 
|  | QuaternionA* q1 = ::new (reinterpret_cast<void*>(array1)) QuaternionA; | 
|  | QuaternionUA* q2 = ::new (reinterpret_cast<void*>(array2)) QuaternionUA; | 
|  | QuaternionUA* q3 = ::new (reinterpret_cast<void*>(arrayunaligned)) QuaternionUA; | 
|  |  | 
|  | q1->coeffs().setRandom(); | 
|  | *q2 = *q1; | 
|  | *q3 = *q1; | 
|  |  | 
|  | VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); | 
|  | VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); | 
|  | } | 
|  |  | 
|  | template <typename PlainObjectType> | 
|  | void check_const_correctness(const PlainObjectType&) { | 
|  | // there's a lot that we can't test here while still having this test compile! | 
|  | // the only possible approach would be to run a script trying to compile stuff and checking that it fails. | 
|  | // CMake can help with that. | 
|  |  | 
|  | // verify that map-to-const don't have LvalueBit | 
|  | typedef std::add_const_t<PlainObjectType> ConstPlainObjectType; | 
|  | VERIFY(!(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit)); | 
|  | VERIFY(!(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit)); | 
|  | VERIFY(!(Map<ConstPlainObjectType>::Flags & LvalueBit)); | 
|  | VERIFY(!(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit)); | 
|  | } | 
|  |  | 
|  | // Regression for bug 1573 | 
|  | struct MovableClass { | 
|  | // The following line is a workaround for gcc 4.7 and 4.8 (see bug 1573 comments). | 
|  | static_assert(std::is_nothrow_move_constructible<Quaternionf>::value, ""); | 
|  | MovableClass() = default; | 
|  | MovableClass(const MovableClass&) = default; | 
|  | MovableClass(MovableClass&&) noexcept = default; | 
|  | MovableClass& operator=(const MovableClass&) = default; | 
|  | MovableClass& operator=(MovableClass&&) = default; | 
|  | Quaternionf m_quat; | 
|  | }; | 
|  |  | 
|  | EIGEN_DECLARE_TEST(geo_quaternion) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1((quaternion<float, AutoAlign>())); | 
|  | CALL_SUBTEST_1(check_const_correctness(Quaternionf())); | 
|  | CALL_SUBTEST_1((quaternion<float, DontAlign>())); | 
|  | CALL_SUBTEST_1((quaternionAlignment<float>())); | 
|  | CALL_SUBTEST_1(mapQuaternion<float>()); | 
|  |  | 
|  | CALL_SUBTEST_2((quaternion<double, AutoAlign>())); | 
|  | CALL_SUBTEST_2(check_const_correctness(Quaterniond())); | 
|  | CALL_SUBTEST_2((quaternion<double, DontAlign>())); | 
|  | CALL_SUBTEST_2((quaternionAlignment<double>())); | 
|  | CALL_SUBTEST_2(mapQuaternion<double>()); | 
|  |  | 
|  | #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW | 
|  | AnnoyingScalar::dont_throw = true; | 
|  | #endif | 
|  | CALL_SUBTEST_3((quaternion<AnnoyingScalar, AutoAlign>())); | 
|  | } | 
|  | } |