| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/Geometry> | 
 | #include <Eigen/LU> | 
 | #include <Eigen/SVD> | 
 |  | 
 | template <typename T> | 
 | Matrix<T, 2, 1> angleToVec(T a) { | 
 |   return Matrix<T, 2, 1>(std::cos(a), std::sin(a)); | 
 | } | 
 |  | 
 | // This permits to workaround a bug in clang/llvm code generation. | 
 | template <typename T> | 
 | EIGEN_DONT_INLINE void dont_over_optimize(T& x) { | 
 |   volatile typename T::Scalar tmp = x(0); | 
 |   x(0) = tmp; | 
 | } | 
 |  | 
 | template <typename Scalar, int Mode, int Options> | 
 | void non_projective_only() { | 
 |   /* this test covers the following files: | 
 |    Cross.h Quaternion.h, Transform.cpp | 
 | */ | 
 |   typedef Matrix<Scalar, 3, 1> Vector3; | 
 |   typedef Quaternion<Scalar> Quaternionx; | 
 |   typedef AngleAxis<Scalar> AngleAxisx; | 
 |   typedef Transform<Scalar, 3, Mode, Options> Transform3; | 
 |   typedef DiagonalMatrix<Scalar, 3> AlignedScaling3; | 
 |   typedef Translation<Scalar, 3> Translation3; | 
 |  | 
 |   Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(); | 
 |  | 
 |   Transform3 t0, t1, t2; | 
 |  | 
 |   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
 |  | 
 |   Quaternionx q1, q2; | 
 |  | 
 |   q1 = AngleAxisx(a, v0.normalized()); | 
 |  | 
 |   t0 = Transform3::Identity(); | 
 |   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | 
 |  | 
 |   t0.linear() = q1.toRotationMatrix(); | 
 |  | 
 |   v0 << 50, 2, 1; | 
 |   t0.scale(v0); | 
 |  | 
 |   VERIFY_IS_APPROX((t0 * Vector3(1, 0, 0)).template head<3>().norm(), v0.x()); | 
 |  | 
 |   t0.setIdentity(); | 
 |   t1.setIdentity(); | 
 |   v1 << 1, 2, 3; | 
 |   t0.linear() = q1.toRotationMatrix(); | 
 |   t0.pretranslate(v0); | 
 |   t0.scale(v1); | 
 |   t1.linear() = q1.conjugate().toRotationMatrix(); | 
 |   t1.prescale(v1.cwiseInverse()); | 
 |   t1.translate(-v0); | 
 |  | 
 |   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); | 
 |  | 
 |   t1.fromPositionOrientationScale(v0, q1, v1); | 
 |   VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); | 
 |   VERIFY_IS_APPROX(t1 * v1, t0 * v1); | 
 |  | 
 |   // translation * vector | 
 |   t0.setIdentity(); | 
 |   t0.translate(v0); | 
 |   VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1); | 
 |  | 
 |   // AlignedScaling * vector | 
 |   t0.setIdentity(); | 
 |   t0.scale(v0); | 
 |   VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1); | 
 | } | 
 |  | 
 | template <typename Scalar, int Mode, int Options> | 
 | void transformations() { | 
 |   /* this test covers the following files: | 
 |      Cross.h Quaternion.h, Transform.cpp | 
 |   */ | 
 |   using std::abs; | 
 |   using std::cos; | 
 |   typedef Matrix<Scalar, 3, 3> Matrix3; | 
 |   typedef Matrix<Scalar, 4, 4> Matrix4; | 
 |   typedef Matrix<Scalar, 2, 1> Vector2; | 
 |   typedef Matrix<Scalar, 3, 1> Vector3; | 
 |   typedef Matrix<Scalar, 4, 1> Vector4; | 
 |   typedef Quaternion<Scalar> Quaternionx; | 
 |   typedef AngleAxis<Scalar> AngleAxisx; | 
 |   typedef Transform<Scalar, 2, Mode, Options> Transform2; | 
 |   typedef Transform<Scalar, 3, Mode, Options> Transform3; | 
 |   typedef typename Transform3::MatrixType MatrixType; | 
 |   typedef DiagonalMatrix<Scalar, 3> AlignedScaling3; | 
 |   typedef Translation<Scalar, 2> Translation2; | 
 |   typedef Translation<Scalar, 3> Translation3; | 
 |  | 
 |   Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(); | 
 |   Matrix3 matrot1, m; | 
 |  | 
 |   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
 |   Scalar s0 = internal::random<Scalar>(), s1 = internal::random<Scalar>(); | 
 |  | 
 |   while (v0.norm() < test_precision<Scalar>()) v0 = Vector3::Random(); | 
 |   while (v1.norm() < test_precision<Scalar>()) v1 = Vector3::Random(); | 
 |  | 
 |   VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); | 
 |   VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(EIGEN_PI), v0.unitOrthogonal()) * v0); | 
 |   if (abs(cos(a)) > test_precision<Scalar>()) { | 
 |     VERIFY_IS_APPROX(cos(a) * v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); | 
 |   } | 
 |   m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); | 
 |   VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); | 
 |   VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); | 
 |  | 
 |   Quaternionx q1, q2; | 
 |   q1 = AngleAxisx(a, v0.normalized()); | 
 |   q2 = AngleAxisx(a, v1.normalized()); | 
 |  | 
 |   // rotation matrix conversion | 
 |   matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) * AngleAxisx(Scalar(0.2), Vector3::UnitY()) * | 
 |             AngleAxisx(Scalar(0.3), Vector3::UnitZ()); | 
 |   VERIFY_IS_APPROX(matrot1 * v1, AngleAxisx(Scalar(0.1), Vector3(1, 0, 0)).toRotationMatrix() * | 
 |                                      (AngleAxisx(Scalar(0.2), Vector3(0, 1, 0)).toRotationMatrix() * | 
 |                                       (AngleAxisx(Scalar(0.3), Vector3(0, 0, 1)).toRotationMatrix() * v1))); | 
 |  | 
 |   // angle-axis conversion | 
 |   AngleAxisx aa = AngleAxisx(q1); | 
 |   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | 
 |  | 
 |   // The following test is stable only if 2*angle != angle and v1 is not colinear with axis | 
 |   if ((abs(aa.angle()) > test_precision<Scalar>()) && | 
 |       (abs(aa.axis().dot(v1.normalized())) < (Scalar(1) - Scalar(4) * test_precision<Scalar>()))) { | 
 |     VERIFY(!(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle() * 2, aa.axis())) * v1)); | 
 |   } | 
 |  | 
 |   aa.fromRotationMatrix(aa.toRotationMatrix()); | 
 |   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); | 
 |   // The following test is stable only if 2*angle != angle and v1 is not colinear with axis | 
 |   if ((abs(aa.angle()) > test_precision<Scalar>()) && | 
 |       (abs(aa.axis().dot(v1.normalized())) < (Scalar(1) - Scalar(4) * test_precision<Scalar>()))) { | 
 |     VERIFY(!(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle() * 2, aa.axis())) * v1)); | 
 |   } | 
 |  | 
 |   // AngleAxis | 
 |   VERIFY_IS_APPROX(AngleAxisx(a, v1.normalized()).toRotationMatrix(), | 
 |                    Quaternionx(AngleAxisx(a, v1.normalized())).toRotationMatrix()); | 
 |  | 
 |   AngleAxisx aa1; | 
 |   m = q1.toRotationMatrix(); | 
 |   aa1 = m; | 
 |   VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), Quaternionx(m).toRotationMatrix()); | 
 |  | 
 |   // Transform | 
 |   // TODO complete the tests ! | 
 |   a = 0; | 
 |   while (abs(a) < Scalar(0.1)) | 
 |     a = internal::random<Scalar>(-Scalar(0.4) * Scalar(EIGEN_PI), Scalar(0.4) * Scalar(EIGEN_PI)); | 
 |   q1 = AngleAxisx(a, v0.normalized()); | 
 |   Transform3 t0, t1, t2; | 
 |  | 
 |   // first test setIdentity() and Identity() | 
 |   t0.setIdentity(); | 
 |   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | 
 |   t0.matrix().setZero(); | 
 |   t0 = Transform3::Identity(); | 
 |   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | 
 |  | 
 |   t0.setIdentity(); | 
 |   t1.setIdentity(); | 
 |   v1 << 1, 2, 3; | 
 |   t0.linear() = q1.toRotationMatrix(); | 
 |   t0.pretranslate(v0); | 
 |   t0.scale(v1); | 
 |   t1.linear() = q1.conjugate().toRotationMatrix(); | 
 |   t1.prescale(v1.cwiseInverse()); | 
 |   t1.translate(-v0); | 
 |  | 
 |   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); | 
 |  | 
 |   t1.fromPositionOrientationScale(v0, q1, v1); | 
 |   VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); | 
 |  | 
 |   t0.setIdentity(); | 
 |   t0.scale(v0).rotate(q1.toRotationMatrix()); | 
 |   t1.setIdentity(); | 
 |   t1.scale(v0).rotate(q1); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   t0.setIdentity(); | 
 |   t0.scale(v0).rotate(AngleAxisx(q1)); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); | 
 |   VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); | 
 |  | 
 |   // More transform constructors, operator=, operator*= | 
 |  | 
 |   Matrix3 mat3 = Matrix3::Random(); | 
 |   Matrix4 mat4; | 
 |   mat4 << mat3, Vector3::Zero(), Vector4::Zero().transpose(); | 
 |   Transform3 tmat3(mat3), tmat4(mat4); | 
 |   if (Mode != int(AffineCompact)) tmat4.matrix()(3, 3) = Scalar(1); | 
 |   VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); | 
 |  | 
 |   Scalar a3 = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
 |   Vector3 v3 = Vector3::Random().normalized(); | 
 |   AngleAxisx aa3(a3, v3); | 
 |   Transform3 t3(aa3); | 
 |   Transform3 t4; | 
 |   t4 = aa3; | 
 |   VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); | 
 |   t4.rotate(AngleAxisx(-a3, v3)); | 
 |   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | 
 |   t4 *= aa3; | 
 |   VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); | 
 |  | 
 |   do { | 
 |     v3 = Vector3::Random(); | 
 |     dont_over_optimize(v3); | 
 |   } while (v3.cwiseAbs().minCoeff() < NumTraits<Scalar>::epsilon()); | 
 |   Translation3 tv3(v3); | 
 |   Transform3 t5(tv3); | 
 |   t4 = tv3; | 
 |   VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); | 
 |   t4.translate((-v3).eval()); | 
 |   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | 
 |   t4 *= tv3; | 
 |   VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); | 
 |  | 
 |   AlignedScaling3 sv3(v3); | 
 |   Transform3 t6(sv3); | 
 |   t4 = sv3; | 
 |   VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); | 
 |   t4.scale(v3.cwiseInverse()); | 
 |   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); | 
 |   t4 *= sv3; | 
 |   VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); | 
 |  | 
 |   // matrix * transform | 
 |   VERIFY_IS_APPROX((t3.matrix() * t4).matrix(), (t3 * t4).matrix()); | 
 |  | 
 |   // chained Transform product | 
 |   VERIFY_IS_APPROX(((t3 * t4) * t5).matrix(), (t3 * (t4 * t5)).matrix()); | 
 |  | 
 |   // check that Transform product doesn't have aliasing problems | 
 |   t5 = t4; | 
 |   t5 = t5 * t5; | 
 |   VERIFY_IS_APPROX(t5, t4 * t4); | 
 |  | 
 |   // 2D transformation | 
 |   Transform2 t20, t21; | 
 |   Vector2 v20 = Vector2::Random(); | 
 |   Vector2 v21 = Vector2::Random(); | 
 |   for (int k = 0; k < 2; ++k) | 
 |     if (abs(v21[k]) < Scalar(1e-3)) v21[k] = Scalar(1e-3); | 
 |   t21.setIdentity(); | 
 |   t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); | 
 |   VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20, a, v21).matrix(), t21.pretranslate(v20).scale(v21).matrix()); | 
 |  | 
 |   t21.setIdentity(); | 
 |   t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); | 
 |   VERIFY((t20.fromPositionOrientationScale(v20, a, v21) * (t21.prescale(v21.cwiseInverse()).translate(-v20))) | 
 |              .matrix() | 
 |              .isIdentity(test_precision<Scalar>())); | 
 |  | 
 |   t20.setIdentity(); | 
 |   t20.shear(Scalar(2), Scalar(3)); | 
 |   Transform2 t23 = t20 * t21; | 
 |   t21.preshear(Scalar(2), Scalar(3)); | 
 |   VERIFY_IS_APPROX(t21, t23); | 
 |  | 
 |   // Transform - new API | 
 |   // 3D | 
 |   t0.setIdentity(); | 
 |   t0.rotate(q1).scale(v0).translate(v0); | 
 |   // mat * aligned scaling and mat * translation | 
 |   t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   // mat * transformation and aligned scaling * translation | 
 |   t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0)); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   t0.setIdentity(); | 
 |   t0.scale(s0).translate(v0); | 
 |   t1 = Eigen::Scaling(s0) * Translation3(v0); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   t0.prescale(s0); | 
 |   t1 = Eigen::Scaling(s0) * t1; | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   t0 = t3; | 
 |   t0.scale(s0); | 
 |   t1 = t3 * Eigen::Scaling(s0, s0, s0); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   t0.prescale(s0); | 
 |   t1 = Eigen::Scaling(s0, s0, s0) * t1; | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   t0 = t3; | 
 |   t0.scale(s0); | 
 |   t1 = t3 * Eigen::Scaling(s0); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   t0.prescale(s0); | 
 |   t1 = Eigen::Scaling(s0) * t1; | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   t0.setIdentity(); | 
 |   t0.prerotate(q1).prescale(v0).pretranslate(v0); | 
 |   // translation * aligned scaling and transformation * mat | 
 |   t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   // scaling * mat and translation * mat | 
 |   t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1)); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   t0.setIdentity(); | 
 |   t0.scale(v0).translate(v0).rotate(q1); | 
 |   // translation * mat and aligned scaling * transformation | 
 |   t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1)); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   // transformation * aligned scaling | 
 |   t0.scale(v0); | 
 |   t1 *= AlignedScaling3(v0); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1)); | 
 |   t1 = t1 * v0.asDiagonal(); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   // transformation * translation | 
 |   t0.translate(v0); | 
 |   t1 = t1 * Translation3(v0); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |   // translation * transformation | 
 |   t0.pretranslate(v0); | 
 |   t1 = Translation3(v0) * t1; | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   // transform * quaternion | 
 |   t0.rotate(q1); | 
 |   t1 = t1 * q1; | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   // translation * quaternion | 
 |   t0.translate(v1).rotate(q1); | 
 |   t1 = t1 * (Translation3(v1) * q1); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   // aligned scaling * quaternion | 
 |   t0.scale(v1).rotate(q1); | 
 |   t1 = t1 * (AlignedScaling3(v1) * q1); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   // quaternion * transform | 
 |   t0.prerotate(q1); | 
 |   t1 = q1 * t1; | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   // quaternion * translation | 
 |   t0.rotate(q1).translate(v1); | 
 |   t1 = t1 * (q1 * Translation3(v1)); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   // quaternion * aligned scaling | 
 |   t0.rotate(q1).scale(v1); | 
 |   t1 = t1 * (q1 * AlignedScaling3(v1)); | 
 |   VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); | 
 |  | 
 |   // test transform inversion | 
 |   t0.setIdentity(); | 
 |   t0.translate(v0); | 
 |   do { | 
 |     t0.linear().setRandom(); | 
 |   } while (t0.linear().jacobiSvd().singularValues()(2) < test_precision<Scalar>()); | 
 |   Matrix4 t044 = Matrix4::Zero(); | 
 |   t044(3, 3) = 1; | 
 |   t044.block(0, 0, t0.matrix().rows(), 4) = t0.matrix(); | 
 |   VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0, 0, t0.matrix().rows(), 4)); | 
 |   t0.setIdentity(); | 
 |   t0.translate(v0).rotate(q1); | 
 |   t044 = Matrix4::Zero(); | 
 |   t044(3, 3) = 1; | 
 |   t044.block(0, 0, t0.matrix().rows(), 4) = t0.matrix(); | 
 |   VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0, 0, t0.matrix().rows(), 4)); | 
 |  | 
 |   Matrix3 mat_rotation, mat_scaling; | 
 |   t0.setIdentity(); | 
 |   t0.translate(v0).rotate(q1).scale(v1); | 
 |   t0.computeRotationScaling(&mat_rotation, &mat_scaling); | 
 |   VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); | 
 |   VERIFY_IS_APPROX(mat_rotation * mat_rotation.adjoint(), Matrix3::Identity()); | 
 |   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); | 
 |   t0.computeScalingRotation(&mat_scaling, &mat_rotation); | 
 |   VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); | 
 |   VERIFY_IS_APPROX(mat_rotation * mat_rotation.adjoint(), Matrix3::Identity()); | 
 |   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); | 
 |  | 
 |   // test casting | 
 |   Transform<float, 3, Mode> t1f = t1.template cast<float>(); | 
 |   VERIFY_IS_APPROX(t1f.template cast<Scalar>(), t1); | 
 |   Transform<double, 3, Mode> t1d = t1.template cast<double>(); | 
 |   VERIFY_IS_APPROX(t1d.template cast<Scalar>(), t1); | 
 |  | 
 |   Translation3 tr1(v0); | 
 |   Translation<float, 3> tr1f = tr1.template cast<float>(); | 
 |   VERIFY_IS_APPROX(tr1f.template cast<Scalar>(), tr1); | 
 |   Translation<double, 3> tr1d = tr1.template cast<double>(); | 
 |   VERIFY_IS_APPROX(tr1d.template cast<Scalar>(), tr1); | 
 |  | 
 |   AngleAxis<float> aa1f = aa1.template cast<float>(); | 
 |   VERIFY_IS_APPROX(aa1f.template cast<Scalar>(), aa1); | 
 |   AngleAxis<double> aa1d = aa1.template cast<double>(); | 
 |   VERIFY_IS_APPROX(aa1d.template cast<Scalar>(), aa1); | 
 |  | 
 |   Rotation2D<Scalar> r2d1(internal::random<Scalar>()); | 
 |   Rotation2D<float> r2d1f = r2d1.template cast<float>(); | 
 |   VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(), r2d1); | 
 |   Rotation2D<double> r2d1d = r2d1.template cast<double>(); | 
 |   VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(), r2d1); | 
 |  | 
 |   for (int k = 0; k < 100; ++k) { | 
 |     Scalar angle = internal::random<Scalar>(-100, 100); | 
 |     Rotation2D<Scalar> rot2(angle); | 
 |     VERIFY(rot2.smallestPositiveAngle() >= 0); | 
 |     VERIFY(rot2.smallestPositiveAngle() <= Scalar(2) * Scalar(EIGEN_PI)); | 
 |     VERIFY_IS_APPROX(angleToVec(rot2.smallestPositiveAngle()), angleToVec(rot2.angle())); | 
 |  | 
 |     VERIFY(rot2.smallestAngle() >= -Scalar(EIGEN_PI)); | 
 |     VERIFY(rot2.smallestAngle() <= Scalar(EIGEN_PI)); | 
 |     VERIFY_IS_APPROX(angleToVec(rot2.smallestAngle()), angleToVec(rot2.angle())); | 
 |  | 
 |     Matrix<Scalar, 2, 2> rot2_as_mat(rot2); | 
 |     Rotation2D<Scalar> rot3(rot2_as_mat); | 
 |     VERIFY_IS_APPROX(angleToVec(rot2.smallestAngle()), angleToVec(rot3.angle())); | 
 |   } | 
 |  | 
 |   s0 = internal::random<Scalar>(-100, 100); | 
 |   s1 = internal::random<Scalar>(-100, 100); | 
 |   Rotation2D<Scalar> R0(s0), R1(s1); | 
 |  | 
 |   t20 = Translation2(v20) * (R0 * Eigen::Scaling(s0)); | 
 |   t21 = Translation2(v20) * R0 * Eigen::Scaling(s0); | 
 |   VERIFY_IS_APPROX(t20, t21); | 
 |  | 
 |   t20 = Translation2(v20) * (R0 * R0.inverse() * Eigen::Scaling(s0)); | 
 |   t21 = Translation2(v20) * Eigen::Scaling(s0); | 
 |   VERIFY_IS_APPROX(t20, t21); | 
 |  | 
 |   VERIFY_IS_APPROX(s0, (R0.slerp(0, R1)).angle()); | 
 |   VERIFY_IS_APPROX(angleToVec(R1.smallestPositiveAngle()), angleToVec((R0.slerp(1, R1)).smallestPositiveAngle())); | 
 |   VERIFY_IS_APPROX(R0.smallestPositiveAngle(), (R0.slerp(0.5, R0)).smallestPositiveAngle()); | 
 |  | 
 |   if (std::cos(s0) > 0) | 
 |     VERIFY_IS_MUCH_SMALLER_THAN((R0.slerp(0.5, R0.inverse())).smallestAngle(), Scalar(1)); | 
 |   else | 
 |     VERIFY_IS_APPROX(Scalar(EIGEN_PI), (R0.slerp(0.5, R0.inverse())).smallestPositiveAngle()); | 
 |  | 
 |   // Check path length | 
 |   Scalar l = 0; | 
 |   int path_steps = 100; | 
 |   for (int k = 0; k < path_steps; ++k) { | 
 |     Scalar a1 = R0.slerp(Scalar(k) / Scalar(path_steps), R1).angle(); | 
 |     Scalar a2 = R0.slerp(Scalar(k + 1) / Scalar(path_steps), R1).angle(); | 
 |     l += std::abs(a2 - a1); | 
 |   } | 
 |   VERIFY(l <= Scalar(EIGEN_PI) * (Scalar(1) + NumTraits<Scalar>::epsilon() * Scalar(path_steps / 2))); | 
 |  | 
 |   // check basic features | 
 |   { | 
 |     Rotation2D<Scalar> r1;        // default ctor | 
 |     r1 = Rotation2D<Scalar>(s0);  // copy assignment | 
 |     VERIFY_IS_APPROX(r1.angle(), s0); | 
 |     Rotation2D<Scalar> r2(r1);  // copy ctor | 
 |     VERIFY_IS_APPROX(r2.angle(), s0); | 
 |   } | 
 |  | 
 |   { | 
 |     Transform3 t32(Matrix4::Random()), t33, t34; | 
 |     t34 = t33 = t32; | 
 |     t32.scale(v0); | 
 |     t33 *= AlignedScaling3(v0); | 
 |     VERIFY_IS_APPROX(t32.matrix(), t33.matrix()); | 
 |     t33 = t34 * AlignedScaling3(v0); | 
 |     VERIFY_IS_APPROX(t32.matrix(), t33.matrix()); | 
 |   } | 
 | } | 
 |  | 
 | template <typename A1, typename A2, typename P, typename Q, typename V, typename H> | 
 | void transform_associativity_left(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h) { | 
 |   VERIFY_IS_APPROX(q * (a1 * v), (q * a1) * v); | 
 |   VERIFY_IS_APPROX(q * (a2 * v), (q * a2) * v); | 
 |   VERIFY_IS_APPROX(q * (p * h).hnormalized(), ((q * p) * h).hnormalized()); | 
 | } | 
 |  | 
 | template <typename A1, typename A2, typename P, typename Q, typename V, typename H> | 
 | void transform_associativity2(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h) { | 
 |   VERIFY_IS_APPROX(a1 * (q * v), (a1 * q) * v); | 
 |   VERIFY_IS_APPROX(a2 * (q * v), (a2 * q) * v); | 
 |   VERIFY_IS_APPROX(p * (q * v).homogeneous(), (p * q) * v.homogeneous()); | 
 |  | 
 |   transform_associativity_left(a1, a2, p, q, v, h); | 
 | } | 
 |  | 
 | template <typename Scalar, int Dim, int Options, typename RotationType> | 
 | void transform_associativity(const RotationType& R) { | 
 |   typedef Matrix<Scalar, Dim, 1> VectorType; | 
 |   typedef Matrix<Scalar, Dim + 1, 1> HVectorType; | 
 |   typedef Matrix<Scalar, Dim, Dim> LinearType; | 
 |   typedef Matrix<Scalar, Dim + 1, Dim + 1> MatrixType; | 
 |   typedef Transform<Scalar, Dim, AffineCompact, Options> AffineCompactType; | 
 |   typedef Transform<Scalar, Dim, Affine, Options> AffineType; | 
 |   typedef Transform<Scalar, Dim, Projective, Options> ProjectiveType; | 
 |   typedef DiagonalMatrix<Scalar, Dim> ScalingType; | 
 |   typedef Translation<Scalar, Dim> TranslationType; | 
 |  | 
 |   AffineCompactType A1c; | 
 |   A1c.matrix().setRandom(); | 
 |   AffineCompactType A2c; | 
 |   A2c.matrix().setRandom(); | 
 |   AffineType A1(A1c); | 
 |   AffineType A2(A2c); | 
 |   ProjectiveType P1; | 
 |   P1.matrix().setRandom(); | 
 |   VectorType v1 = VectorType::Random(); | 
 |   VectorType v2 = VectorType::Random(); | 
 |   HVectorType h1 = HVectorType::Random(); | 
 |   Scalar s1 = internal::random<Scalar>(); | 
 |   LinearType L = LinearType::Random(); | 
 |   MatrixType M = MatrixType::Random(); | 
 |  | 
 |   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, A2, v2, h1)); | 
 |   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, A2c, v2, h1)); | 
 |   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, v1.asDiagonal(), v2, h1)); | 
 |   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, ScalingType(v1), v2, h1)); | 
 |   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, Scaling(v1), v2, h1)); | 
 |   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, Scaling(s1), v2, h1)); | 
 |   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, TranslationType(v1), v2, h1)); | 
 |   CALL_SUBTEST(transform_associativity_left(A1c, A1, P1, L, v2, h1)); | 
 |   CALL_SUBTEST(transform_associativity2(A1c, A1, P1, R, v2, h1)); | 
 |  | 
 |   VERIFY_IS_APPROX(A1 * (M * h1), (A1 * M) * h1); | 
 |   VERIFY_IS_APPROX(A1c * (M * h1), (A1c * M) * h1); | 
 |   VERIFY_IS_APPROX(P1 * (M * h1), (P1 * M) * h1); | 
 |  | 
 |   VERIFY_IS_APPROX(M * (A1 * h1), (M * A1) * h1); | 
 |   VERIFY_IS_APPROX(M * (A1c * h1), (M * A1c) * h1); | 
 |   VERIFY_IS_APPROX(M * (P1 * h1), ((M * P1) * h1)); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | void transform_alignment() { | 
 |   typedef Transform<Scalar, 3, Projective, AutoAlign> Projective3a; | 
 |   typedef Transform<Scalar, 3, Projective, DontAlign> Projective3u; | 
 |  | 
 |   EIGEN_ALIGN_MAX Scalar array1[16]; | 
 |   EIGEN_ALIGN_MAX Scalar array2[16]; | 
 |   EIGEN_ALIGN_MAX Scalar array3[16 + 1]; | 
 |   Scalar* array3u = array3 + 1; | 
 |  | 
 |   Projective3a* p1 = ::new (reinterpret_cast<void*>(array1)) Projective3a; | 
 |   Projective3u* p2 = ::new (reinterpret_cast<void*>(array2)) Projective3u; | 
 |   Projective3u* p3 = ::new (reinterpret_cast<void*>(array3u)) Projective3u; | 
 |  | 
 |   p1->matrix().setRandom(); | 
 |   *p2 = *p1; | 
 |   *p3 = *p1; | 
 |  | 
 |   VERIFY_IS_APPROX(p1->matrix(), p2->matrix()); | 
 |   VERIFY_IS_APPROX(p1->matrix(), p3->matrix()); | 
 |  | 
 |   VERIFY_IS_APPROX((*p1) * (*p1), (*p2) * (*p3)); | 
 | } | 
 |  | 
 | template <typename Scalar, int Dim, int Options> | 
 | void transform_products() { | 
 |   typedef Matrix<Scalar, Dim + 1, Dim + 1> Mat; | 
 |   typedef Transform<Scalar, Dim, Projective, Options> Proj; | 
 |   typedef Transform<Scalar, Dim, Affine, Options> Aff; | 
 |   typedef Transform<Scalar, Dim, AffineCompact, Options> AffC; | 
 |  | 
 |   Proj p; | 
 |   p.matrix().setRandom(); | 
 |   Aff a; | 
 |   a.linear().setRandom(); | 
 |   a.translation().setRandom(); | 
 |   AffC ac = a; | 
 |  | 
 |   Mat p_m(p.matrix()), a_m(a.matrix()); | 
 |  | 
 |   VERIFY_IS_APPROX((p * p).matrix(), p_m * p_m); | 
 |   VERIFY_IS_APPROX((a * a).matrix(), a_m * a_m); | 
 |   VERIFY_IS_APPROX((p * a).matrix(), p_m * a_m); | 
 |   VERIFY_IS_APPROX((a * p).matrix(), a_m * p_m); | 
 |   VERIFY_IS_APPROX((ac * a).matrix(), a_m * a_m); | 
 |   VERIFY_IS_APPROX((a * ac).matrix(), a_m * a_m); | 
 |   VERIFY_IS_APPROX((p * ac).matrix(), p_m * a_m); | 
 |   VERIFY_IS_APPROX((ac * p).matrix(), a_m * p_m); | 
 | } | 
 |  | 
 | template <typename Scalar, int Mode, int Options> | 
 | void transformations_no_scale() { | 
 |   /* this test covers the following files: | 
 |   Cross.h Quaternion.h, Transform.h | 
 | */ | 
 |   typedef Matrix<Scalar, 3, 1> Vector3; | 
 |   typedef Matrix<Scalar, 4, 1> Vector4; | 
 |   typedef Quaternion<Scalar> Quaternionx; | 
 |   typedef AngleAxis<Scalar> AngleAxisx; | 
 |   typedef Transform<Scalar, 3, Mode, Options> Transform3; | 
 |   typedef Translation<Scalar, 3> Translation3; | 
 |   typedef Matrix<Scalar, 4, 4> Matrix4; | 
 |  | 
 |   Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(); | 
 |  | 
 |   Transform3 t0, t1, t2; | 
 |  | 
 |   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
 |  | 
 |   Quaternionx q1, q2; | 
 |  | 
 |   q1 = AngleAxisx(a, v0.normalized()); | 
 |  | 
 |   t0 = Transform3::Identity(); | 
 |   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); | 
 |  | 
 |   t0.setIdentity(); | 
 |   t1.setIdentity(); | 
 |   v1 = Vector3::Ones(); | 
 |   t0.linear() = q1.toRotationMatrix(); | 
 |   t0.pretranslate(v0); | 
 |   t1.linear() = q1.conjugate().toRotationMatrix(); | 
 |   t1.translate(-v0); | 
 |  | 
 |   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); | 
 |  | 
 |   t1.fromPositionOrientationScale(v0, q1, v1); | 
 |   VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); | 
 |   VERIFY_IS_APPROX(t1 * v1, t0 * v1); | 
 |  | 
 |   // translation * vector | 
 |   t0.setIdentity(); | 
 |   t0.translate(v0); | 
 |   VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1); | 
 |  | 
 |   // Conversion to matrix. | 
 |   Transform3 t3; | 
 |   t3.linear() = q1.toRotationMatrix(); | 
 |   t3.translation() = v1; | 
 |   Matrix4 m3 = t3.matrix(); | 
 |   VERIFY((m3 * m3.inverse()).isIdentity(test_precision<Scalar>())); | 
 |   // Verify implicit last row is initialized. | 
 |   VERIFY_IS_APPROX(Vector4(m3.row(3)), Vector4(0.0, 0.0, 0.0, 1.0)); | 
 |  | 
 |   VERIFY_IS_APPROX(t3.rotation(), t3.linear()); | 
 |   if (Mode == Isometry) VERIFY(t3.rotation().data() == t3.linear().data()); | 
 | } | 
 |  | 
 | template <typename Scalar, int Mode, int Options> | 
 | void transformations_computed_scaling_continuity() { | 
 |   typedef Matrix<Scalar, 3, 1> Vector3; | 
 |   typedef Transform<Scalar, 3, Mode, Options> Transform3; | 
 |   typedef Matrix<Scalar, 3, 3> Matrix3; | 
 |  | 
 |   // Given: two transforms that differ by '2*eps'. | 
 |   Scalar eps(1e-3); | 
 |   Vector3 v0 = Vector3::Random().normalized(), v1 = Vector3::Random().normalized(), v3 = Vector3::Random().normalized(); | 
 |   Transform3 t0, t1; | 
 |   // The interesting case is when their determinants have different signs. | 
 |   Matrix3 rank2 = 50 * v0 * v0.adjoint() + 20 * v1 * v1.adjoint(); | 
 |   t0.linear() = rank2 + eps * v3 * v3.adjoint(); | 
 |   t1.linear() = rank2 - eps * v3 * v3.adjoint(); | 
 |  | 
 |   // When: computing the rotation-scaling parts | 
 |   Matrix3 r0, s0, r1, s1; | 
 |   t0.computeRotationScaling(&r0, &s0); | 
 |   t1.computeRotationScaling(&r1, &s1); | 
 |  | 
 |   // Then: the scaling parts should differ by no more than '2*eps'. | 
 |   const Scalar c(2.1);  // 2 + room for rounding errors | 
 |   VERIFY((s0 - s1).norm() < c * eps); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(geo_transformations) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1((transformations<double, Affine, AutoAlign>())); | 
 |     CALL_SUBTEST_1((non_projective_only<double, Affine, AutoAlign>())); | 
 |     CALL_SUBTEST_1((transformations_computed_scaling_continuity<double, Affine, AutoAlign>())); | 
 |  | 
 |     CALL_SUBTEST_2((transformations<float, AffineCompact, AutoAlign>())); | 
 |     CALL_SUBTEST_2((non_projective_only<float, AffineCompact, AutoAlign>())); | 
 |     CALL_SUBTEST_2((transform_alignment<float>())); | 
 |  | 
 |     CALL_SUBTEST_3((transformations<double, Projective, AutoAlign>())); | 
 |     CALL_SUBTEST_3((transformations<double, Projective, DontAlign>())); | 
 |     CALL_SUBTEST_3((transform_alignment<double>())); | 
 |  | 
 |     CALL_SUBTEST_4((transformations<float, Affine, RowMajor | AutoAlign>())); | 
 |     CALL_SUBTEST_4((non_projective_only<float, Affine, RowMajor>())); | 
 |  | 
 |     CALL_SUBTEST_5((transformations<double, AffineCompact, RowMajor | AutoAlign>())); | 
 |     CALL_SUBTEST_5((non_projective_only<double, AffineCompact, RowMajor>())); | 
 |  | 
 |     CALL_SUBTEST_6((transformations<double, Projective, RowMajor | AutoAlign>())); | 
 |     CALL_SUBTEST_6((transformations<double, Projective, RowMajor | DontAlign>())); | 
 |  | 
 |     CALL_SUBTEST_7((transform_products<double, 3, RowMajor | AutoAlign>())); | 
 |     CALL_SUBTEST_7((transform_products<float, 2, AutoAlign>())); | 
 |  | 
 |     CALL_SUBTEST_8((transform_associativity<double, 2, ColMajor>( | 
 |         Rotation2D<double>(internal::random<double>() * double(EIGEN_PI))))); | 
 |     CALL_SUBTEST_8((transform_associativity<double, 3, ColMajor>(Quaterniond::UnitRandom()))); | 
 |  | 
 |     CALL_SUBTEST_9((transformations_no_scale<double, Affine, AutoAlign>())); | 
 |     CALL_SUBTEST_9((transformations_no_scale<double, Isometry, AutoAlign>())); | 
 |   } | 
 | } |