|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/QR> | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void householder(const MatrixType& m) { | 
|  | static bool even = true; | 
|  | even = !even; | 
|  | /* this test covers the following files: | 
|  | Householder.h | 
|  | */ | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
|  | typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType; | 
|  | typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType; | 
|  |  | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType; | 
|  |  | 
|  | Matrix<Scalar, internal::max_size_prefer_dynamic(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime), 1> | 
|  | _tmp((std::max)(rows, cols)); | 
|  | Scalar* tmp = &_tmp.coeffRef(0, 0); | 
|  |  | 
|  | Scalar beta; | 
|  | RealScalar alpha; | 
|  | EssentialVectorType essential; | 
|  |  | 
|  | VectorType v1 = VectorType::Random(rows), v2; | 
|  | v2 = v1; | 
|  | v1.makeHouseholder(essential, beta, alpha); | 
|  | v1.applyHouseholderOnTheLeft(essential, beta, tmp); | 
|  | VERIFY_IS_APPROX(v1.norm(), v2.norm()); | 
|  | if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows - 1).norm(), v1.norm()); | 
|  | v1 = VectorType::Random(rows); | 
|  | v2 = v1; | 
|  | v1.applyHouseholderOnTheLeft(essential, beta, tmp); | 
|  | VERIFY_IS_APPROX(v1.norm(), v2.norm()); | 
|  |  | 
|  | // reconstruct householder matrix: | 
|  | SquareMatrixType id, H1, H2; | 
|  | id.setIdentity(rows, rows); | 
|  | H1 = H2 = id; | 
|  | VectorType vv(rows); | 
|  | vv << Scalar(1), essential; | 
|  | H1.applyHouseholderOnTheLeft(essential, beta, tmp); | 
|  | H2.applyHouseholderOnTheRight(essential, beta, tmp); | 
|  | VERIFY_IS_APPROX(H1, H2); | 
|  | VERIFY_IS_APPROX(H1, id - beta * vv * vv.adjoint()); | 
|  |  | 
|  | MatrixType m1(rows, cols), m2(rows, cols); | 
|  |  | 
|  | v1 = VectorType::Random(rows); | 
|  | if (even) v1.tail(rows - 1).setZero(); | 
|  | m1.colwise() = v1; | 
|  | m2 = m1; | 
|  | m1.col(0).makeHouseholder(essential, beta, alpha); | 
|  | m1.applyHouseholderOnTheLeft(essential, beta, tmp); | 
|  | VERIFY_IS_APPROX(m1.norm(), m2.norm()); | 
|  | if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1, 0, rows - 1, cols).norm(), m1.norm()); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0, 0)), numext::real(m1(0, 0))); | 
|  | VERIFY_IS_APPROX(numext::real(m1(0, 0)), alpha); | 
|  |  | 
|  | v1 = VectorType::Random(rows); | 
|  | if (even) v1.tail(rows - 1).setZero(); | 
|  | SquareMatrixType m3(rows, rows), m4(rows, rows); | 
|  | m3.rowwise() = v1.transpose(); | 
|  | m4 = m3; | 
|  | m3.row(0).makeHouseholder(essential, beta, alpha); | 
|  | m3.applyHouseholderOnTheRight(essential.conjugate(), beta, tmp); | 
|  | VERIFY_IS_APPROX(m3.norm(), m4.norm()); | 
|  | if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0, 1, rows, rows - 1).norm(), m3.norm()); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0, 0)), numext::real(m3(0, 0))); | 
|  | VERIFY_IS_APPROX(numext::real(m3(0, 0)), alpha); | 
|  |  | 
|  | // test householder sequence on the left with a shift | 
|  |  | 
|  | Index shift = internal::random<Index>(0, std::max<Index>(rows - 2, 0)); | 
|  | Index brows = rows - shift; | 
|  | m1.setRandom(rows, cols); | 
|  | HBlockMatrixType hbm = m1.block(shift, 0, brows, cols); | 
|  | HouseholderQR<HBlockMatrixType> qr(hbm); | 
|  | m2 = m1; | 
|  | m2.block(shift, 0, brows, cols) = qr.matrixQR(); | 
|  | HCoeffsVectorType hc = qr.hCoeffs().conjugate(); | 
|  | HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc); | 
|  | hseq.setLength(hc.size()).setShift(shift); | 
|  | VERIFY(hseq.length() == hc.size()); | 
|  | VERIFY(hseq.shift() == shift); | 
|  |  | 
|  | MatrixType m5 = m2; | 
|  | m5.block(shift, 0, brows, cols).template triangularView<StrictlyLower>().setZero(); | 
|  | VERIFY_IS_APPROX(hseq * m5, m1);  // test applying hseq directly | 
|  | m3 = hseq; | 
|  | VERIFY_IS_APPROX(m3 * m5, m1);  // test evaluating hseq to a dense matrix, then applying | 
|  |  | 
|  | SquareMatrixType hseq_mat = hseq; | 
|  | SquareMatrixType hseq_mat_conj = hseq.conjugate(); | 
|  | SquareMatrixType hseq_mat_adj = hseq.adjoint(); | 
|  | SquareMatrixType hseq_mat_trans = hseq.transpose(); | 
|  | SquareMatrixType m6 = SquareMatrixType::Random(rows, rows); | 
|  | VERIFY_IS_APPROX(hseq_mat.adjoint(), hseq_mat_adj); | 
|  | VERIFY_IS_APPROX(hseq_mat.conjugate(), hseq_mat_conj); | 
|  | VERIFY_IS_APPROX(hseq_mat.transpose(), hseq_mat_trans); | 
|  | VERIFY_IS_APPROX(hseq * m6, hseq_mat * m6); | 
|  | VERIFY_IS_APPROX(hseq.adjoint() * m6, hseq_mat_adj * m6); | 
|  | VERIFY_IS_APPROX(hseq.conjugate() * m6, hseq_mat_conj * m6); | 
|  | VERIFY_IS_APPROX(hseq.transpose() * m6, hseq_mat_trans * m6); | 
|  | VERIFY_IS_APPROX(m6 * hseq, m6 * hseq_mat); | 
|  | VERIFY_IS_APPROX(m6 * hseq.adjoint(), m6 * hseq_mat_adj); | 
|  | VERIFY_IS_APPROX(m6 * hseq.conjugate(), m6 * hseq_mat_conj); | 
|  | VERIFY_IS_APPROX(m6 * hseq.transpose(), m6 * hseq_mat_trans); | 
|  |  | 
|  | // test householder sequence on the right with a shift | 
|  |  | 
|  | TMatrixType tm2 = m2.transpose(); | 
|  | HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc); | 
|  | rhseq.setLength(hc.size()).setShift(shift); | 
|  | VERIFY_IS_APPROX(rhseq * m5, m1);  // test applying rhseq directly | 
|  | m3 = rhseq; | 
|  | VERIFY_IS_APPROX(m3 * m5, m1);  // test evaluating rhseq to a dense matrix, then applying | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void householder_update(const MatrixType& m) { | 
|  | // This test is covering the internal::householder_qr_inplace_update function. | 
|  | // At time of writing, there is not public API that exposes this update behavior directly, | 
|  | // so we are testing the internal implementation. | 
|  |  | 
|  | const Index rows = m.rows(); | 
|  | const Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX; | 
|  | typedef Matrix<Scalar, Dynamic, 1> VectorX; | 
|  |  | 
|  | VectorX tmpOwner(cols); | 
|  | Scalar* tmp = tmpOwner.data(); | 
|  |  | 
|  | // The matrix to factorize. | 
|  | const MatrixType A = MatrixType::Random(rows, cols); | 
|  |  | 
|  | // matQR and hCoeffs will hold the factorization of A, | 
|  | // built by a sequence of calls to `update`. | 
|  | MatrixType matQR(rows, cols); | 
|  | HCoeffsVectorType hCoeffs(cols); | 
|  |  | 
|  | // householder_qr_inplace_update should be able to build a QR factorization one column at a time. | 
|  | // We verify this by starting with an empty factorization and 'updating' one column at a time. | 
|  | // After each call to update, we should have a QR factorization of the columns presented so far. | 
|  |  | 
|  | const Index size = (std::min)(rows, cols);  // QR can only go up to 'size' b/c that's full rank. | 
|  | for (Index k = 0; k != size; ++k) { | 
|  | // Make a copy of the column to prevent any possibility of 'leaking' other parts of A. | 
|  | const VectorType newColumn = A.col(k); | 
|  | internal::householder_qr_inplace_update(matQR, hCoeffs, newColumn, k, tmp); | 
|  |  | 
|  | // Verify Property: | 
|  | // matQR.leftCols(k+1) and hCoeffs.head(k+1) hold | 
|  | // a QR factorization of A.leftCols(k+1). | 
|  | // This is the fundamental guarantee of householder_qr_inplace_update. | 
|  | { | 
|  | const MatrixX matQR_k = matQR.leftCols(k + 1); | 
|  | const VectorX hCoeffs_k = hCoeffs.head(k + 1); | 
|  | MatrixX R = matQR_k.template triangularView<Upper>(); | 
|  | MatrixX QxR = householderSequence(matQR_k, hCoeffs_k.conjugate()) * R; | 
|  | VERIFY_IS_APPROX(QxR, A.leftCols(k + 1)); | 
|  | } | 
|  |  | 
|  | // Verify Property: | 
|  | // A sequence of calls to 'householder_qr_inplace_update' | 
|  | // should produce the same result as 'householder_qr_inplace_unblocked'. | 
|  | // This is a property of the current implementation. | 
|  | // If these implementations diverge in the future, | 
|  | // then simply delete the test of this property. | 
|  | { | 
|  | MatrixX QR_at_once = A.leftCols(k + 1); | 
|  | VectorX hCoeffs_at_once(k + 1); | 
|  | internal::householder_qr_inplace_unblocked(QR_at_once, hCoeffs_at_once, tmp); | 
|  | VERIFY_IS_APPROX(QR_at_once, matQR.leftCols(k + 1)); | 
|  | VERIFY_IS_APPROX(hCoeffs_at_once, hCoeffs.head(k + 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify Property: | 
|  | // We can go back and update any column to have a new value, | 
|  | // and get a QR factorization of the columns up to that one. | 
|  | { | 
|  | const Index k = internal::random<Index>(0, size - 1); | 
|  | VectorType newColumn = VectorType::Random(rows); | 
|  | internal::householder_qr_inplace_update(matQR, hCoeffs, newColumn, k, tmp); | 
|  |  | 
|  | const MatrixX matQR_k = matQR.leftCols(k + 1); | 
|  | const VectorX hCoeffs_k = hCoeffs.head(k + 1); | 
|  | MatrixX R = matQR_k.template triangularView<Upper>(); | 
|  | MatrixX QxR = householderSequence(matQR_k, hCoeffs_k.conjugate()) * R; | 
|  | VERIFY_IS_APPROX(QxR.leftCols(k), A.leftCols(k)); | 
|  | VERIFY_IS_APPROX(QxR.col(k), newColumn); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(householder) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(householder(Matrix<double, 2, 2>())); | 
|  | CALL_SUBTEST_2(householder(Matrix<float, 2, 3>())); | 
|  | CALL_SUBTEST_3(householder(Matrix<double, 3, 5>())); | 
|  | CALL_SUBTEST_4(householder(Matrix<float, 4, 4>())); | 
|  | CALL_SUBTEST_5(householder( | 
|  | MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_6(householder( | 
|  | MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_7(householder( | 
|  | MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_8(householder(Matrix<double, 1, 1>())); | 
|  |  | 
|  | CALL_SUBTEST_9(householder_update(Matrix<double, 3, 5>())); | 
|  | CALL_SUBTEST_9(householder_update(Matrix<float, 4, 2>())); | 
|  | CALL_SUBTEST_9(householder_update( | 
|  | MatrixXcf(internal::random<Index>(1, EIGEN_TEST_MAX_SIZE), internal::random<Index>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | } | 
|  | } |