|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | static bool g_called; | 
|  | #define EIGEN_SCALAR_BINARY_OP_PLUGIN \ | 
|  | { g_called |= (!internal::is_same<LhsScalar, RhsScalar>::value); } | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void linearStructure(const MatrixType& m) { | 
|  | using std::abs; | 
|  | /* this test covers the following files: | 
|  | CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h | 
|  | */ | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | // this test relies a lot on Random.h, and there's not much more that we can do | 
|  | // to test it, hence I consider that we will have tested Random.h | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  | while (abs(s1) < RealScalar(1e-3)) s1 = internal::random<Scalar>(); | 
|  |  | 
|  | Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); | 
|  |  | 
|  | VERIFY_IS_APPROX(-(-m1), m1); | 
|  | VERIFY_IS_APPROX(m1 + m1, 2 * m1); | 
|  | VERIFY_IS_APPROX(m1 + m2 - m1, m2); | 
|  | VERIFY_IS_APPROX(-m2 + m1 + m2, m1); | 
|  | VERIFY_IS_APPROX(m1 * s1, s1 * m1); | 
|  | VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2); | 
|  | VERIFY_IS_APPROX((-m1 + m2) * s1, -s1 * m1 + s1 * m2); | 
|  | m3 = m2; | 
|  | m3 += m1; | 
|  | VERIFY_IS_APPROX(m3, m1 + m2); | 
|  | m3 = m2; | 
|  | m3 -= m1; | 
|  | VERIFY_IS_APPROX(m3, m2 - m1); | 
|  | m3 = m2; | 
|  | m3 *= s1; | 
|  | VERIFY_IS_APPROX(m3, s1 * m2); | 
|  | if (!NumTraits<Scalar>::IsInteger) { | 
|  | m3 = m2; | 
|  | m3 /= s1; | 
|  | VERIFY_IS_APPROX(m3, m2 / s1); | 
|  | } | 
|  |  | 
|  | // again, test operator() to check const-qualification | 
|  | VERIFY_IS_APPROX((-m1)(r, c), -(m1(r, c))); | 
|  | VERIFY_IS_APPROX((m1 - m2)(r, c), (m1(r, c)) - (m2(r, c))); | 
|  | VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c))); | 
|  | VERIFY_IS_APPROX((s1 * m1)(r, c), s1 * (m1(r, c))); | 
|  | VERIFY_IS_APPROX((m1 * s1)(r, c), (m1(r, c)) * s1); | 
|  | if (!NumTraits<Scalar>::IsInteger) VERIFY_IS_APPROX((m1 / s1)(r, c), (m1(r, c)) / s1); | 
|  |  | 
|  | // use .block to disable vectorization and compare to the vectorized version | 
|  | VERIFY_IS_APPROX(m1 + m1.block(0, 0, rows, cols), m1 + m1); | 
|  | VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), m1.cwiseProduct(m1)); | 
|  | VERIFY_IS_APPROX(m1 - m1.block(0, 0, rows, cols), m1 - m1); | 
|  | VERIFY_IS_APPROX(m1.block(0, 0, rows, cols) * s1, m1 * s1); | 
|  | } | 
|  |  | 
|  | // Make sure that complex * real and real * complex are properly optimized | 
|  | template <typename MatrixType> | 
|  | void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  |  | 
|  | RealScalar s = internal::random<RealScalar>(); | 
|  | MatrixType m1 = MatrixType::Random(rows, cols); | 
|  |  | 
|  | g_called = false; | 
|  | VERIFY_IS_APPROX(s * m1, Scalar(s) * m1); | 
|  | VERIFY(g_called && "real * matrix<complex> not properly optimized"); | 
|  |  | 
|  | g_called = false; | 
|  | VERIFY_IS_APPROX(m1 * s, m1 * Scalar(s)); | 
|  | VERIFY(g_called && "matrix<complex> * real not properly optimized"); | 
|  |  | 
|  | g_called = false; | 
|  | VERIFY_IS_APPROX(m1 / s, m1 / Scalar(s)); | 
|  | VERIFY(g_called && "matrix<complex> / real not properly optimized"); | 
|  |  | 
|  | g_called = false; | 
|  | VERIFY_IS_APPROX(s + m1.array(), Scalar(s) + m1.array()); | 
|  | VERIFY(g_called && "real + matrix<complex> not properly optimized"); | 
|  |  | 
|  | g_called = false; | 
|  | VERIFY_IS_APPROX(m1.array() + s, m1.array() + Scalar(s)); | 
|  | VERIFY(g_called && "matrix<complex> + real not properly optimized"); | 
|  |  | 
|  | g_called = false; | 
|  | VERIFY_IS_APPROX(s - m1.array(), Scalar(s) - m1.array()); | 
|  | VERIFY(g_called && "real - matrix<complex> not properly optimized"); | 
|  |  | 
|  | g_called = false; | 
|  | VERIFY_IS_APPROX(m1.array() - s, m1.array() - Scalar(s)); | 
|  | VERIFY(g_called && "matrix<complex> - real not properly optimized"); | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void linearstructure_overflow() { | 
|  | // make sure that /=scalar and /scalar do not overflow | 
|  | // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not | 
|  | Matrix4d m2, m3; | 
|  | m3 = m2 = Matrix4d::Random() * 1e-20; | 
|  | m2 = m2 / 4.9e-320; | 
|  | VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones()); | 
|  | m3 /= 4.9e-320; | 
|  | VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones()); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(linearstructure) { | 
|  | g_called = true; | 
|  | VERIFY(g_called);  // avoid `unneeded-internal-declaration` warning. | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(linearStructure(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(linearStructure(Matrix2f())); | 
|  | CALL_SUBTEST_3(linearStructure(Vector3d())); | 
|  | CALL_SUBTEST_4(linearStructure(Matrix4d())); | 
|  | CALL_SUBTEST_5(linearStructure(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), | 
|  | internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); | 
|  | CALL_SUBTEST_6(linearStructure( | 
|  | MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_7(linearStructure( | 
|  | MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_8(linearStructure(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), | 
|  | internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); | 
|  | CALL_SUBTEST_9(linearStructure( | 
|  | ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_10(linearStructure( | 
|  | ArrayXXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  |  | 
|  | CALL_SUBTEST_11(real_complex<Matrix4cd>()); | 
|  | CALL_SUBTEST_11(real_complex<MatrixXcf>(10, 10)); | 
|  | CALL_SUBTEST_11(real_complex<ArrayXXcf>(10, 10)); | 
|  | } | 
|  | CALL_SUBTEST_4(linearstructure_overflow<0>()); | 
|  | } |