|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template <int Alignment, typename VectorType> | 
|  | void map_class_vector(const VectorType& m) { | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  |  | 
|  | Index size = m.size(); | 
|  |  | 
|  | VectorType v = VectorType::Random(size); | 
|  |  | 
|  | Index arraysize = 3 * size; | 
|  |  | 
|  | Scalar* a_array = internal::aligned_new<Scalar>(arraysize + 1); | 
|  | Scalar* array = a_array; | 
|  | if (Alignment != Aligned) | 
|  | array = (Scalar*)(std::intptr_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar | 
|  | ? sizeof(Scalar) | 
|  | : sizeof(typename NumTraits<Scalar>::Real))); | 
|  |  | 
|  | { | 
|  | Map<VectorType, Alignment, InnerStride<3> > map(array, size); | 
|  | map = v; | 
|  | for (int i = 0; i < size; ++i) { | 
|  | VERIFY_IS_EQUAL(array[3 * i], v[i]); | 
|  | VERIFY_IS_EQUAL(map[i], v[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2)); | 
|  | map = v; | 
|  | for (int i = 0; i < size; ++i) { | 
|  | VERIFY_IS_EQUAL(array[2 * i], v[i]); | 
|  | VERIFY_IS_EQUAL(map[i], v[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | internal::aligned_delete(a_array, arraysize + 1); | 
|  | } | 
|  |  | 
|  | template <int Alignment, typename MatrixType> | 
|  | void map_class_matrix(const MatrixType& _m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | Index rows = _m.rows(), cols = _m.cols(); | 
|  |  | 
|  | MatrixType m = MatrixType::Random(rows, cols); | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  |  | 
|  | Index arraysize = 4 * (rows + 4) * (cols + 4); | 
|  |  | 
|  | Scalar* a_array1 = internal::aligned_new<Scalar>(arraysize + 1); | 
|  | Scalar* array1 = a_array1; | 
|  | if (Alignment != Aligned) | 
|  | array1 = (Scalar*)(std::intptr_t(a_array1) + (internal::packet_traits<Scalar>::AlignedOnScalar | 
|  | ? sizeof(Scalar) | 
|  | : sizeof(typename NumTraits<Scalar>::Real))); | 
|  |  | 
|  | Scalar a_array2[256]; | 
|  | Scalar* array2 = a_array2; | 
|  | if (Alignment != Aligned) { | 
|  | array2 = (Scalar*)(std::intptr_t(a_array2) + (internal::packet_traits<Scalar>::AlignedOnScalar | 
|  | ? sizeof(Scalar) | 
|  | : sizeof(typename NumTraits<Scalar>::Real))); | 
|  | } else { | 
|  | // In case there is no alignment, default to pointing to the start. | 
|  | constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1); | 
|  | array2 = (Scalar*)(((std::uintptr_t(a_array2) + alignment - 1) / alignment) * alignment); | 
|  | } | 
|  | Index maxsize2 = a_array2 - array2 + 256; | 
|  |  | 
|  | // test no inner stride and some dynamic outer stride | 
|  | for (int k = 0; k < 2; ++k) { | 
|  | if (k == 1 && (m.innerSize() + 1) * m.outerSize() > maxsize2) break; | 
|  | Scalar* array = (k == 0 ? array1 : array2); | 
|  |  | 
|  | Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize() + 1)); | 
|  | map = m; | 
|  | VERIFY(map.outerStride() == map.innerSize() + 1); | 
|  | for (int i = 0; i < m.outerSize(); ++i) | 
|  | for (int j = 0; j < m.innerSize(); ++j) { | 
|  | VERIFY_IS_EQUAL(array[map.outerStride() * i + j], m.coeffByOuterInner(i, j)); | 
|  | VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); | 
|  | } | 
|  | VERIFY_IS_APPROX(s1 * map, s1 * m); | 
|  | map *= s1; | 
|  | VERIFY_IS_APPROX(map, s1 * m); | 
|  | } | 
|  |  | 
|  | // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices, | 
|  | // this allows to hit the special case where it's vectorizable. | 
|  | for (int k = 0; k < 2; ++k) { | 
|  | if (k == 1 && (m.innerSize() + 4) * m.outerSize() > maxsize2) break; | 
|  | Scalar* array = (k == 0 ? array1 : array2); | 
|  |  | 
|  | enum { | 
|  | InnerSize = MatrixType::InnerSizeAtCompileTime, | 
|  | OuterStrideAtCompileTime = InnerSize == Dynamic ? Dynamic : InnerSize + 4 | 
|  | }; | 
|  | Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> > map( | 
|  | array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize() + 4)); | 
|  | map = m; | 
|  | VERIFY(map.outerStride() == map.innerSize() + 4); | 
|  | for (int i = 0; i < m.outerSize(); ++i) | 
|  | for (int j = 0; j < m.innerSize(); ++j) { | 
|  | VERIFY_IS_EQUAL(array[map.outerStride() * i + j], m.coeffByOuterInner(i, j)); | 
|  | VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); | 
|  | } | 
|  | VERIFY_IS_APPROX(s1 * map, s1 * m); | 
|  | map *= s1; | 
|  | VERIFY_IS_APPROX(map, s1 * m); | 
|  | } | 
|  |  | 
|  | // test both inner stride and outer stride | 
|  | for (int k = 0; k < 2; ++k) { | 
|  | if (k == 1 && (2 * m.innerSize() + 1) * (m.outerSize() * 2) > maxsize2) break; | 
|  | Scalar* array = (k == 0 ? array1 : array2); | 
|  |  | 
|  | Map<MatrixType, Alignment, Stride<Dynamic, Dynamic> > map(array, rows, cols, | 
|  | Stride<Dynamic, Dynamic>(2 * m.innerSize() + 1, 2)); | 
|  | map = m; | 
|  | VERIFY(map.outerStride() == 2 * map.innerSize() + 1); | 
|  | VERIFY(map.innerStride() == 2); | 
|  | for (int i = 0; i < m.outerSize(); ++i) | 
|  | for (int j = 0; j < m.innerSize(); ++j) { | 
|  | VERIFY_IS_EQUAL(array[map.outerStride() * i + map.innerStride() * j], m.coeffByOuterInner(i, j)); | 
|  | VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); | 
|  | } | 
|  | VERIFY_IS_APPROX(s1 * map, s1 * m); | 
|  | map *= s1; | 
|  | VERIFY_IS_APPROX(map, s1 * m); | 
|  | } | 
|  |  | 
|  | // test inner stride and no outer stride | 
|  | for (int k = 0; k < 2; ++k) { | 
|  | if (k == 1 && (m.innerSize() * 2) * m.outerSize() > maxsize2) break; | 
|  | Scalar* array = (k == 0 ? array1 : array2); | 
|  |  | 
|  | Map<MatrixType, Alignment, InnerStride<Dynamic> > map(array, rows, cols, InnerStride<Dynamic>(2)); | 
|  | map = m; | 
|  | VERIFY(map.outerStride() == map.innerSize() * 2); | 
|  | for (int i = 0; i < m.outerSize(); ++i) | 
|  | for (int j = 0; j < m.innerSize(); ++j) { | 
|  | VERIFY_IS_EQUAL(array[map.innerSize() * i * 2 + j * 2], m.coeffByOuterInner(i, j)); | 
|  | VERIFY_IS_EQUAL(map.coeffByOuterInner(i, j), m.coeffByOuterInner(i, j)); | 
|  | } | 
|  | VERIFY_IS_APPROX(s1 * map, s1 * m); | 
|  | map *= s1; | 
|  | VERIFY_IS_APPROX(map, s1 * m); | 
|  | } | 
|  |  | 
|  | // test negative strides | 
|  | { | 
|  | Matrix<Scalar, Dynamic, 1>::Map(a_array1, arraysize + 1).setRandom(); | 
|  | Index outerstride = m.innerSize() + 4; | 
|  | Scalar* array = array1; | 
|  |  | 
|  | { | 
|  | Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>(outerstride)); | 
|  | Map<MatrixType, Unaligned, OuterStride<> > map2(array + (m.outerSize() - 1) * outerstride, rows, cols, | 
|  | OuterStride<>(-outerstride)); | 
|  | if (MatrixType::IsRowMajor) | 
|  | VERIFY_IS_APPROX(map1.colwise().reverse(), map2); | 
|  | else | 
|  | VERIFY_IS_APPROX(map1.rowwise().reverse(), map2); | 
|  | } | 
|  |  | 
|  | { | 
|  | Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>(outerstride)); | 
|  | Map<MatrixType, Unaligned, Stride<Dynamic, Dynamic> > map2( | 
|  | array + (m.outerSize() - 1) * outerstride + m.innerSize() - 1, rows, cols, | 
|  | Stride<Dynamic, Dynamic>(-outerstride, -1)); | 
|  | VERIFY_IS_APPROX(map1.reverse(), map2); | 
|  | } | 
|  |  | 
|  | { | 
|  | Map<MatrixType, Alignment, OuterStride<> > map1(array, rows, cols, OuterStride<>(outerstride)); | 
|  | Map<MatrixType, Unaligned, Stride<Dynamic, -1> > map2( | 
|  | array + (m.outerSize() - 1) * outerstride + m.innerSize() - 1, rows, cols, | 
|  | Stride<Dynamic, -1>(-outerstride, -1)); | 
|  | VERIFY_IS_APPROX(map1.reverse(), map2); | 
|  | } | 
|  | } | 
|  |  | 
|  | internal::aligned_delete(a_array1, arraysize + 1); | 
|  | } | 
|  |  | 
|  | // Additional tests for inner-stride but no outer-stride | 
|  | template <int> | 
|  | void bug1453() { | 
|  | const int data[] = {0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15, | 
|  | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; | 
|  | typedef Matrix<int, Dynamic, Dynamic, RowMajor> RowMatrixXi; | 
|  | typedef Matrix<int, 2, 3, ColMajor> ColMatrix23i; | 
|  | typedef Matrix<int, 3, 2, ColMajor> ColMatrix32i; | 
|  | typedef Matrix<int, 2, 3, RowMajor> RowMatrix23i; | 
|  | typedef Matrix<int, 3, 2, RowMajor> RowMatrix32i; | 
|  |  | 
|  | VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); | 
|  | VERIFY_IS_APPROX(MatrixXi::Map(data, 2, 3, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); | 
|  | VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); | 
|  | VERIFY_IS_APPROX(MatrixXi::Map(data, 3, 2, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); | 
|  |  | 
|  | VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); | 
|  | VERIFY_IS_APPROX(RowMatrixXi::Map(data, 2, 3, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); | 
|  | VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); | 
|  | VERIFY_IS_APPROX(RowMatrixXi::Map(data, 3, 2, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); | 
|  |  | 
|  | VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); | 
|  | VERIFY_IS_APPROX(ColMatrix23i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 2, 3, Stride<4, 2>())); | 
|  | VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<2>()), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); | 
|  | VERIFY_IS_APPROX(ColMatrix32i::Map(data, InnerStride<>(2)), MatrixXi::Map(data, 3, 2, Stride<6, 2>())); | 
|  |  | 
|  | VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); | 
|  | VERIFY_IS_APPROX(RowMatrix23i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 2, 3, Stride<6, 2>())); | 
|  | VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<2>()), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); | 
|  | VERIFY_IS_APPROX(RowMatrix32i::Map(data, InnerStride<>(2)), RowMatrixXi::Map(data, 3, 2, Stride<4, 2>())); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(mapstride) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | int maxn = 3; | 
|  | CALL_SUBTEST_1(map_class_vector<Aligned>(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_1(map_class_vector<Unaligned>(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(map_class_vector<Aligned>(Vector4d())); | 
|  | CALL_SUBTEST_2(map_class_vector<Unaligned>(Vector4d())); | 
|  | CALL_SUBTEST_3(map_class_vector<Aligned>(RowVector4f())); | 
|  | CALL_SUBTEST_3(map_class_vector<Unaligned>(RowVector4f())); | 
|  | CALL_SUBTEST_4(map_class_vector<Aligned>(VectorXcf(internal::random<int>(1, maxn)))); | 
|  | CALL_SUBTEST_4(map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1, maxn)))); | 
|  | CALL_SUBTEST_5(map_class_vector<Aligned>(VectorXi(internal::random<int>(1, maxn)))); | 
|  | CALL_SUBTEST_5(map_class_vector<Unaligned>(VectorXi(internal::random<int>(1, maxn)))); | 
|  |  | 
|  | CALL_SUBTEST_1(map_class_matrix<Aligned>(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_1(map_class_matrix<Unaligned>(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(map_class_matrix<Aligned>(Matrix4d())); | 
|  | CALL_SUBTEST_2(map_class_matrix<Unaligned>(Matrix4d())); | 
|  | CALL_SUBTEST_3(map_class_matrix<Aligned>(Matrix<float, 3, 5>())); | 
|  | CALL_SUBTEST_3(map_class_matrix<Unaligned>(Matrix<float, 3, 5>())); | 
|  | CALL_SUBTEST_3(map_class_matrix<Aligned>(Matrix<float, 4, 8>())); | 
|  | CALL_SUBTEST_3(map_class_matrix<Unaligned>(Matrix<float, 4, 8>())); | 
|  | CALL_SUBTEST_4( | 
|  | map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
|  | CALL_SUBTEST_4( | 
|  | map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
|  | CALL_SUBTEST_5(map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
|  | CALL_SUBTEST_5( | 
|  | map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
|  | CALL_SUBTEST_6( | 
|  | map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
|  | CALL_SUBTEST_6( | 
|  | map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1, maxn), internal::random<int>(1, maxn)))); | 
|  |  | 
|  | CALL_SUBTEST_5(bug1453<0>()); | 
|  |  | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(maxn); | 
|  | } | 
|  | } |