| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <limits> | 
 | #include <Eigen/Eigenvalues> | 
 |  | 
 | template <typename MatrixType> | 
 | void verifyIsQuasiTriangular(const MatrixType& T) { | 
 |   const Index size = T.cols(); | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   // Check T is lower Hessenberg | 
 |   for (int row = 2; row < size; ++row) { | 
 |     for (int col = 0; col < row - 1; ++col) { | 
 |       VERIFY_IS_EQUAL(T(row, col), Scalar(0)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Check that any non-zero on the subdiagonal is followed by a zero and is | 
 |   // part of a 2x2 diagonal block with imaginary eigenvalues. | 
 |   for (int row = 1; row < size; ++row) { | 
 |     if (!numext::is_exactly_zero(T(row, row - 1))) { | 
 |       VERIFY(row == size - 1 || numext::is_exactly_zero(T(row + 1, row))); | 
 |       Scalar tr = T(row - 1, row - 1) + T(row, row); | 
 |       Scalar det = T(row - 1, row - 1) * T(row, row) - T(row - 1, row) * T(row, row - 1); | 
 |       VERIFY(4 * det > tr * tr); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void schur(int size = MatrixType::ColsAtCompileTime) { | 
 |   // Test basic functionality: T is quasi-triangular and A = U T U* | 
 |   for (int counter = 0; counter < g_repeat; ++counter) { | 
 |     MatrixType A = MatrixType::Random(size, size); | 
 |     RealSchur<MatrixType> schurOfA(A); | 
 |     VERIFY_IS_EQUAL(schurOfA.info(), Success); | 
 |     MatrixType U = schurOfA.matrixU(); | 
 |     MatrixType T = schurOfA.matrixT(); | 
 |     verifyIsQuasiTriangular(T); | 
 |     VERIFY_IS_APPROX(A, U * T * U.transpose()); | 
 |   } | 
 |  | 
 |   // Test asserts when not initialized | 
 |   RealSchur<MatrixType> rsUninitialized; | 
 |   VERIFY_RAISES_ASSERT(rsUninitialized.matrixT()); | 
 |   VERIFY_RAISES_ASSERT(rsUninitialized.matrixU()); | 
 |   VERIFY_RAISES_ASSERT(rsUninitialized.info()); | 
 |  | 
 |   // Test whether compute() and constructor returns same result | 
 |   MatrixType A = MatrixType::Random(size, size); | 
 |   RealSchur<MatrixType> rs1; | 
 |   rs1.compute(A); | 
 |   RealSchur<MatrixType> rs2(A); | 
 |   VERIFY_IS_EQUAL(rs1.info(), Success); | 
 |   VERIFY_IS_EQUAL(rs2.info(), Success); | 
 |   VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT()); | 
 |   VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU()); | 
 |  | 
 |   // Test maximum number of iterations | 
 |   RealSchur<MatrixType> rs3; | 
 |   rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A); | 
 |   VERIFY_IS_EQUAL(rs3.info(), Success); | 
 |   VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT()); | 
 |   VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU()); | 
 |   if (size > 2) { | 
 |     rs3.setMaxIterations(1).compute(A); | 
 |     VERIFY_IS_EQUAL(rs3.info(), NoConvergence); | 
 |     VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1); | 
 |   } | 
 |  | 
 |   MatrixType Atriangular = A; | 
 |   Atriangular.template triangularView<StrictlyLower>().setZero(); | 
 |   rs3.setMaxIterations(1).compute(Atriangular);  // triangular matrices do not need any iterations | 
 |   VERIFY_IS_EQUAL(rs3.info(), Success); | 
 |   VERIFY_IS_APPROX(rs3.matrixT(), Atriangular);  // approx because of scaling... | 
 |   VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size)); | 
 |  | 
 |   // Test computation of only T, not U | 
 |   RealSchur<MatrixType> rsOnlyT(A, false); | 
 |   VERIFY_IS_EQUAL(rsOnlyT.info(), Success); | 
 |   VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT()); | 
 |   VERIFY_RAISES_ASSERT(rsOnlyT.matrixU()); | 
 |  | 
 |   if (size > 2 && size < 20) { | 
 |     // Test matrix with NaN | 
 |     A(0, 0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN(); | 
 |     RealSchur<MatrixType> rsNaN(A); | 
 |     VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence); | 
 |   } | 
 | } | 
 |  | 
 | void test_bug2633() { | 
 |   Eigen::MatrixXd A(4, 4); | 
 |   A << 0, 0, 0, -2, 1, 0, 0, -0, 0, 1, 0, 2, 0, 0, 2, -0; | 
 |   RealSchur<Eigen::MatrixXd> schur(A); | 
 |   VERIFY(schur.info() == Eigen::Success); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(schur_real) { | 
 |   CALL_SUBTEST_1((schur<Matrix4f>())); | 
 |   CALL_SUBTEST_2((schur<MatrixXd>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4)))); | 
 |   CALL_SUBTEST_3((schur<Matrix<float, 1, 1> >())); | 
 |   CALL_SUBTEST_4((schur<Matrix<double, 3, 3, Eigen::RowMajor> >())); | 
 |  | 
 |   // Test problem size constructors | 
 |   CALL_SUBTEST_5(RealSchur<MatrixXf>(10)); | 
 |  | 
 |   CALL_SUBTEST_6((test_bug2633())); | 
 | } |