|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | 
|  | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  | #include <iostream> | 
|  | #include <fstream> | 
|  | #include <iomanip> | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/LevenbergMarquardt> | 
|  |  | 
|  | using namespace std; | 
|  | using namespace Eigen; | 
|  |  | 
|  | template <typename Scalar> | 
|  | struct sparseGaussianTest : SparseFunctor<Scalar, int> { | 
|  | typedef Matrix<Scalar, Dynamic, 1> VectorType; | 
|  | typedef SparseFunctor<Scalar, int> Base; | 
|  | typedef typename Base::JacobianType JacobianType; | 
|  | sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar, int>(inputs, values) {} | 
|  |  | 
|  | VectorType model(const VectorType& uv, VectorType& x) { | 
|  | VectorType y;  // Change this to use expression template | 
|  | int m = Base::values(); | 
|  | int n = Base::inputs(); | 
|  | eigen_assert(uv.size() % 2 == 0); | 
|  | eigen_assert(uv.size() == n); | 
|  | eigen_assert(x.size() == m); | 
|  | y.setZero(m); | 
|  | int half = n / 2; | 
|  | VectorBlock<const VectorType> u(uv, 0, half); | 
|  | VectorBlock<const VectorType> v(uv, half, half); | 
|  | Scalar coeff; | 
|  | for (int j = 0; j < m; j++) { | 
|  | for (int i = 0; i < half; i++) { | 
|  | coeff = (x(j) - i) / v(i); | 
|  | coeff *= coeff; | 
|  | if (coeff < 1. && coeff > 0.) y(j) += u(i) * std::pow((1 - coeff), 2); | 
|  | } | 
|  | } | 
|  | return y; | 
|  | } | 
|  | void initPoints(VectorType& uv_ref, VectorType& x) { | 
|  | m_x = x; | 
|  | m_y = this->model(uv_ref, x); | 
|  | } | 
|  | int operator()(const VectorType& uv, VectorType& fvec) { | 
|  | int m = Base::values(); | 
|  | int n = Base::inputs(); | 
|  | eigen_assert(uv.size() % 2 == 0); | 
|  | eigen_assert(uv.size() == n); | 
|  | int half = n / 2; | 
|  | VectorBlock<const VectorType> u(uv, 0, half); | 
|  | VectorBlock<const VectorType> v(uv, half, half); | 
|  | fvec = m_y; | 
|  | Scalar coeff; | 
|  | for (int j = 0; j < m; j++) { | 
|  | for (int i = 0; i < half; i++) { | 
|  | coeff = (m_x(j) - i) / v(i); | 
|  | coeff *= coeff; | 
|  | if (coeff < 1. && coeff > 0.) fvec(j) -= u(i) * std::pow((1 - coeff), 2); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int df(const VectorType& uv, JacobianType& fjac) { | 
|  | int m = Base::values(); | 
|  | int n = Base::inputs(); | 
|  | eigen_assert(n == uv.size()); | 
|  | eigen_assert(fjac.rows() == m); | 
|  | eigen_assert(fjac.cols() == n); | 
|  | int half = n / 2; | 
|  | VectorBlock<const VectorType> u(uv, 0, half); | 
|  | VectorBlock<const VectorType> v(uv, half, half); | 
|  | Scalar coeff; | 
|  |  | 
|  | // Derivatives with respect to u | 
|  | for (int col = 0; col < half; col++) { | 
|  | for (int row = 0; row < m; row++) { | 
|  | coeff = (m_x(row) - col) / v(col); | 
|  | coeff = coeff * coeff; | 
|  | if (coeff < 1. && coeff > 0.) { | 
|  | fjac.coeffRef(row, col) = -(1 - coeff) * (1 - coeff); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Derivatives with respect to v | 
|  | for (int col = 0; col < half; col++) { | 
|  | for (int row = 0; row < m; row++) { | 
|  | coeff = (m_x(row) - col) / v(col); | 
|  | coeff = coeff * coeff; | 
|  | if (coeff < 1. && coeff > 0.) { | 
|  | fjac.coeffRef(row, col + half) = -4 * (u(col) / v(col)) * coeff * (1 - coeff); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | VectorType m_x, m_y;  // Data points | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | void test_sparseLM_T() { | 
|  | typedef Matrix<T, Dynamic, 1> VectorType; | 
|  |  | 
|  | int inputs = 10; | 
|  | int values = 2000; | 
|  | sparseGaussianTest<T> sparse_gaussian(inputs, values); | 
|  | VectorType uv(inputs), uv_ref(inputs); | 
|  | VectorType x(values); | 
|  | // Generate the reference solution | 
|  | uv_ref << -2, 1, 4, 8, 6, 1.8, 1.2, 1.1, 1.9, 3; | 
|  | // Generate the reference data points | 
|  | x.setRandom(); | 
|  | x = 10 * x; | 
|  | x.array() += 10; | 
|  | sparse_gaussian.initPoints(uv_ref, x); | 
|  |  | 
|  | // Generate the initial parameters | 
|  | VectorBlock<VectorType> u(uv, 0, inputs / 2); | 
|  | VectorBlock<VectorType> v(uv, inputs / 2, inputs / 2); | 
|  | v.setOnes(); | 
|  | // Generate u or Solve for u from v | 
|  | u.setOnes(); | 
|  |  | 
|  | // Solve the optimization problem | 
|  | LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian); | 
|  | int info; | 
|  | //   info = lm.minimize(uv); | 
|  |  | 
|  | VERIFY_IS_EQUAL(info, 1); | 
|  | // Do a step by step solution and save the residual | 
|  | int maxiter = 200; | 
|  | int iter = 0; | 
|  | MatrixXd Err(values, maxiter); | 
|  | MatrixXd Mod(values, maxiter); | 
|  | LevenbergMarquardtSpace::Status status; | 
|  | status = lm.minimizeInit(uv); | 
|  | if (status == LevenbergMarquardtSpace::ImproperInputParameters) return; | 
|  | } | 
|  | EIGEN_DECLARE_TEST(sparseLM) { | 
|  | CALL_SUBTEST_1(test_sparseLM_T<double>()); | 
|  |  | 
|  | // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>()); | 
|  | } |