| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "sparse.h" | 
 |  | 
 | template <typename Scalar, typename StorageIndex> | 
 | void sparse_vector(int rows, int cols) { | 
 |   double densityMat = (std::max)(8. / (rows * cols), 0.01); | 
 |   double densityVec = (std::max)(8. / (rows), 0.1); | 
 |   typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix; | 
 |   typedef Matrix<Scalar, Dynamic, 1> DenseVector; | 
 |   typedef Matrix<DenseIndex, Dynamic, 1> DenseIndexVector; | 
 |   typedef SparseVector<Scalar, 0, StorageIndex> SparseVectorType; | 
 |   typedef SparseMatrix<Scalar, 0, StorageIndex> SparseMatrixType; | 
 |   Scalar eps = 1e-6; | 
 |  | 
 |   SparseMatrixType m1(rows, rows); | 
 |   SparseVectorType v1(rows), v2(rows), v3(rows); | 
 |   DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); | 
 |   DenseVector refV1 = DenseVector::Random(rows), refV2 = DenseVector::Random(rows), refV3 = DenseVector::Random(rows); | 
 |  | 
 |   std::vector<int> zerocoords, nonzerocoords; | 
 |   initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords); | 
 |   initSparse<Scalar>(densityMat, refM1, m1); | 
 |  | 
 |   initSparse<Scalar>(densityVec, refV2, v2); | 
 |   initSparse<Scalar>(densityVec, refV3, v3); | 
 |  | 
 |   Scalar s1 = internal::random<Scalar>(); | 
 |  | 
 |   // test coeff and coeffRef | 
 |   for (unsigned int i = 0; i < zerocoords.size(); ++i) { | 
 |     VERIFY_IS_MUCH_SMALLER_THAN(v1.coeff(zerocoords[i]), eps); | 
 |     // VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 ); | 
 |   } | 
 |   { | 
 |     VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); | 
 |     int j = 0; | 
 |     for (typename SparseVectorType::InnerIterator it(v1); it; ++it, ++j) { | 
 |       VERIFY(nonzerocoords[j] == it.index()); | 
 |       VERIFY_IS_EQUAL(it.value(), v1.coeff(it.index())); | 
 |       VERIFY_IS_EQUAL(it.value(), refV1.coeff(it.index())); | 
 |     } | 
 |   } | 
 |   VERIFY_IS_APPROX(v1, refV1); | 
 |  | 
 |   // test coeffRef with reallocation | 
 |   { | 
 |     SparseVectorType v4(rows); | 
 |     DenseVector v5 = DenseVector::Zero(rows); | 
 |     for (int k = 0; k < rows; ++k) { | 
 |       int i = internal::random<int>(0, rows - 1); | 
 |       Scalar v = internal::random<Scalar>(); | 
 |       v4.coeffRef(i) += v; | 
 |       v5.coeffRef(i) += v; | 
 |     } | 
 |     VERIFY_IS_APPROX(v4, v5); | 
 |   } | 
 |  | 
 |   v1.coeffRef(nonzerocoords[0]) = Scalar(5); | 
 |   refV1.coeffRef(nonzerocoords[0]) = Scalar(5); | 
 |   VERIFY_IS_APPROX(v1, refV1); | 
 |  | 
 |   VERIFY_IS_APPROX(v1 + v2, refV1 + refV2); | 
 |   VERIFY_IS_APPROX(v1 + v2 + v3, refV1 + refV2 + refV3); | 
 |  | 
 |   VERIFY_IS_APPROX(v1 * s1 - v2, refV1 * s1 - refV2); | 
 |  | 
 |   VERIFY_IS_APPROX(v1 *= s1, refV1 *= s1); | 
 |   VERIFY_IS_APPROX(v1 /= s1, refV1 /= s1); | 
 |  | 
 |   VERIFY_IS_APPROX(v1 += v2, refV1 += refV2); | 
 |   VERIFY_IS_APPROX(v1 -= v2, refV1 -= refV2); | 
 |  | 
 |   VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); | 
 |   VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2)); | 
 |  | 
 |   VERIFY_IS_APPROX(m1 * v2, refM1 * refV2); | 
 |   VERIFY_IS_APPROX(v1.dot(m1 * v2), refV1.dot(refM1 * refV2)); | 
 |   { | 
 |     int i = internal::random<int>(0, rows - 1); | 
 |     VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i))); | 
 |   } | 
 |  | 
 |   VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm()); | 
 |  | 
 |   VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm()); | 
 |  | 
 |   // test aliasing | 
 |   VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1)); | 
 |   VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval())); | 
 |   VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1)); | 
 |  | 
 |   // sparse matrix to sparse vector | 
 |   SparseMatrixType mv1; | 
 |   VERIFY_IS_APPROX((mv1 = v1), v1); | 
 |   VERIFY_IS_APPROX(mv1, (v1 = mv1)); | 
 |   VERIFY_IS_APPROX(mv1, (v1 = mv1.transpose())); | 
 |  | 
 |   // check copy to dense vector with transpose | 
 |   refV3.resize(0); | 
 |   VERIFY_IS_APPROX(refV3 = v1.transpose(), v1.toDense()); | 
 |   VERIFY_IS_APPROX(DenseVector(v1), v1.toDense()); | 
 |  | 
 |   // test move | 
 |   { | 
 |     SparseVectorType tmp(std::move(v1)); | 
 |     VERIFY_IS_APPROX(tmp, refV1); | 
 |     v1 = tmp; | 
 |   } | 
 |  | 
 |   { | 
 |     SparseVectorType tmp; | 
 |     tmp = std::move(v1); | 
 |     VERIFY_IS_APPROX(tmp, refV1); | 
 |     v1 = tmp; | 
 |   } | 
 |  | 
 |   { | 
 |     SparseVectorType tmp(std::move(mv1)); | 
 |     VERIFY_IS_APPROX(tmp, refV1); | 
 |     mv1 = tmp; | 
 |   } | 
 |  | 
 |   { | 
 |     SparseVectorType tmp; | 
 |     tmp = std::move(mv1); | 
 |     VERIFY_IS_APPROX(tmp, refV1); | 
 |     mv1 = tmp; | 
 |   } | 
 |  | 
 |   // test conservative resize | 
 |   { | 
 |     std::vector<StorageIndex> inc; | 
 |     if (rows > 3) inc.push_back(-3); | 
 |     inc.push_back(0); | 
 |     inc.push_back(3); | 
 |     inc.push_back(1); | 
 |     inc.push_back(10); | 
 |  | 
 |     for (std::size_t i = 0; i < inc.size(); i++) { | 
 |       StorageIndex incRows = inc[i]; | 
 |       SparseVectorType vec1(rows); | 
 |       DenseVector refVec1 = DenseVector::Zero(rows); | 
 |       initSparse<Scalar>(densityVec, refVec1, vec1); | 
 |  | 
 |       vec1.conservativeResize(rows + incRows); | 
 |       refVec1.conservativeResize(rows + incRows); | 
 |       if (incRows > 0) refVec1.tail(incRows).setZero(); | 
 |  | 
 |       VERIFY_IS_APPROX(vec1, refVec1); | 
 |  | 
 |       // Insert new values | 
 |       if (incRows > 0) vec1.insert(vec1.rows() - 1) = refVec1(refVec1.rows() - 1) = 1; | 
 |  | 
 |       VERIFY_IS_APPROX(vec1, refVec1); | 
 |     } | 
 |   } | 
 |  | 
 |   // test sort | 
 |   if (rows > 1) { | 
 |     SparseVectorType vec1(rows); | 
 |     DenseVector refVec1 = DenseVector::Zero(rows); | 
 |     DenseIndexVector innerIndices(rows); | 
 |     innerIndices.setLinSpaced(0, rows - 1); | 
 |     std::random_device rd; | 
 |     std::mt19937 g(rd()); | 
 |     std::shuffle(innerIndices.begin(), innerIndices.end(), g); | 
 |     Index nz = internal::random<Index>(2, rows / 2); | 
 |     for (Index k = 0; k < nz; k++) { | 
 |       Index i = innerIndices[k]; | 
 |       Scalar val = internal::random<Scalar>(); | 
 |       refVec1.coeffRef(i) = val; | 
 |       vec1.insert(i) = val; | 
 |     } | 
 |  | 
 |     vec1.template sortInnerIndices<std::greater<>>(); | 
 |     VERIFY_IS_APPROX(vec1, refVec1); | 
 |     VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::greater<>>(), 1); | 
 |     VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::less<>>(), 0); | 
 |     vec1.template sortInnerIndices<std::less<>>(); | 
 |     VERIFY_IS_APPROX(vec1, refVec1); | 
 |     VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::greater<>>(), 0); | 
 |     VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::less<>>(), 1); | 
 |   } | 
 | } | 
 | void test_pruning() { | 
 |   using SparseVectorType = SparseVector<double, 0, int>; | 
 |  | 
 |   SparseVectorType vec; | 
 |   auto init_vec = [&]() { | 
 |     ; | 
 |     vec.resize(10); | 
 |     vec.insert(3) = 0.1; | 
 |     vec.insert(5) = 1.0; | 
 |     vec.insert(8) = -0.1; | 
 |     vec.insert(9) = -0.2; | 
 |   }; | 
 |   init_vec(); | 
 |  | 
 |   VERIFY_IS_EQUAL(vec.nonZeros(), 4); | 
 |   VERIFY_IS_EQUAL(vec.prune(0.1, 1.0), 2); | 
 |   VERIFY_IS_EQUAL(vec.nonZeros(), 2); | 
 |   VERIFY_IS_EQUAL(vec.coeff(5), 1.0); | 
 |   VERIFY_IS_EQUAL(vec.coeff(9), -0.2); | 
 |  | 
 |   init_vec(); | 
 |   VERIFY_IS_EQUAL(vec.prune([](double v) { return v >= 0; }), 2); | 
 |   VERIFY_IS_EQUAL(vec.nonZeros(), 2); | 
 |   VERIFY_IS_EQUAL(vec.coeff(3), 0.1); | 
 |   VERIFY_IS_EQUAL(vec.coeff(5), 1.0); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(sparse_vector) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     int r = Eigen::internal::random<int>(1, 500), c = Eigen::internal::random<int>(1, 500); | 
 |     if (Eigen::internal::random<int>(0, 4) == 0) { | 
 |       r = c;  // check square matrices in 25% of tries | 
 |     } | 
 |     EIGEN_UNUSED_VARIABLE(r + c); | 
 |  | 
 |     CALL_SUBTEST_1((sparse_vector<double, int>(8, 8))); | 
 |     CALL_SUBTEST_2((sparse_vector<std::complex<double>, int>(r, c))); | 
 |     CALL_SUBTEST_1((sparse_vector<double, long int>(r, c))); | 
 |     CALL_SUBTEST_1((sparse_vector<double, short>(r, c))); | 
 |   } | 
 |  | 
 |   CALL_SUBTEST_1(test_pruning()); | 
 | } |