|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef SVD_DEFAULT | 
|  | #error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h | 
|  | #endif | 
|  |  | 
|  | #ifndef SVD_FOR_MIN_NORM | 
|  | #error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h | 
|  | #endif | 
|  |  | 
|  | #ifndef SVD_STATIC_OPTIONS | 
|  | #error a macro SVD_STATIC_OPTIONS(MatrixType, Options) must be defined prior to including svd_common.h | 
|  | #endif | 
|  |  | 
|  | #include "svd_fill.h" | 
|  | #include "solverbase.h" | 
|  |  | 
|  | // Check that the matrix m is properly reconstructed and that the U and V factors are unitary | 
|  | // The SVD must have already been computed. | 
|  | template <typename SvdType, typename MatrixType> | 
|  | void svd_check_full(const MatrixType& m, const SvdType& svd) { | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime }; | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType; | 
|  | typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType; | 
|  |  | 
|  | MatrixType sigma = MatrixType::Zero(rows, cols); | 
|  | sigma.diagonal() = svd.singularValues().template cast<Scalar>(); | 
|  | MatrixUType u = svd.matrixU(); | 
|  | MatrixVType v = svd.matrixV(); | 
|  | RealScalar scaling = m.cwiseAbs().maxCoeff(); | 
|  | if (scaling < (std::numeric_limits<RealScalar>::min)()) { | 
|  | VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)()); | 
|  | } else { | 
|  | VERIFY_IS_APPROX(m / scaling, u * (sigma / scaling) * v.adjoint()); | 
|  | } | 
|  | VERIFY_IS_UNITARY(u); | 
|  | VERIFY_IS_UNITARY(v); | 
|  | } | 
|  |  | 
|  | // Compare partial SVD defined by computationOptions to a full SVD referenceSvd | 
|  | template <typename MatrixType, typename SvdType, int Options> | 
|  | void svd_compare_to_full(const MatrixType& m, const SvdType& referenceSvd) { | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  | Index diagSize = (std::min)(rows, cols); | 
|  | RealScalar prec = test_precision<RealScalar>(); | 
|  |  | 
|  | SVD_STATIC_OPTIONS(MatrixType, Options) svd(m); | 
|  |  | 
|  | VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); | 
|  |  | 
|  | if (Options & (ComputeFullV | ComputeThinV)) { | 
|  | VERIFY((svd.matrixV().adjoint() * svd.matrixV()).isIdentity(prec)); | 
|  | VERIFY_IS_APPROX(svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * | 
|  | svd.matrixV().leftCols(diagSize).adjoint(), | 
|  | referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * | 
|  | referenceSvd.matrixV().leftCols(diagSize).adjoint()); | 
|  | } | 
|  |  | 
|  | if (Options & (ComputeFullU | ComputeThinU)) { | 
|  | VERIFY((svd.matrixU().adjoint() * svd.matrixU()).isIdentity(prec)); | 
|  | VERIFY_IS_APPROX(svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * | 
|  | svd.matrixU().leftCols(diagSize).adjoint(), | 
|  | referenceSvd.matrixU().leftCols(diagSize) * | 
|  | referenceSvd.singularValues().cwiseAbs2().asDiagonal() * | 
|  | referenceSvd.matrixU().leftCols(diagSize).adjoint()); | 
|  | } | 
|  |  | 
|  | // The following checks are not critical. | 
|  | // For instance, with Dived&Conquer SVD, if only the factor 'V' is computed then different matrix-matrix product | 
|  | // implementation will be used and the resulting 'V' factor might be significantly different when the SVD | 
|  | // decomposition is not unique, especially with single precision float. | 
|  | ++g_test_level; | 
|  | if (Options & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU()); | 
|  | if (Options & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize)); | 
|  | if (Options & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs()); | 
|  | if (Options & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize)); | 
|  | --g_test_level; | 
|  | } | 
|  |  | 
|  | template <typename SvdType, typename MatrixType> | 
|  | void svd_least_square(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime }; | 
|  |  | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType; | 
|  | typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType; | 
|  |  | 
|  | RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols)); | 
|  | SvdType svd(m); | 
|  |  | 
|  | if (internal::is_same<RealScalar, double>::value) | 
|  | svd.setThreshold(RealScalar(1e-8)); | 
|  | else if (internal::is_same<RealScalar, float>::value) | 
|  | svd.setThreshold(RealScalar(2e-4)); | 
|  |  | 
|  | SolutionType x = svd.solve(rhs); | 
|  |  | 
|  | RealScalar residual = (m * x - rhs).norm(); | 
|  | RealScalar rhs_norm = rhs.norm(); | 
|  | if (!test_isMuchSmallerThan(residual, rhs.norm())) { | 
|  | // ^^^ If the residual is very small, then we have an exact solution, so we are already good. | 
|  |  | 
|  | // evaluate normal equation which works also for least-squares solutions | 
|  | if (internal::is_same<RealScalar, double>::value || svd.rank() == m.diagonal().size()) { | 
|  | using std::sqrt; | 
|  | // This test is not stable with single precision. | 
|  | // This is probably because squaring m signicantly affects the precision. | 
|  | if (internal::is_same<RealScalar, float>::value) ++g_test_level; | 
|  |  | 
|  | VERIFY_IS_APPROX(m.adjoint() * (m * x), m.adjoint() * rhs); | 
|  |  | 
|  | if (internal::is_same<RealScalar, float>::value) --g_test_level; | 
|  | } | 
|  |  | 
|  | // Check that there is no significantly better solution in the neighborhood of x | 
|  | for (Index k = 0; k < x.rows(); ++k) { | 
|  | using std::abs; | 
|  |  | 
|  | SolutionType y(x); | 
|  | y.row(k) = (RealScalar(1) + 2 * NumTraits<RealScalar>::epsilon()) * x.row(k); | 
|  | RealScalar residual_y = (m * y - rhs).norm(); | 
|  | VERIFY(test_isMuchSmallerThan(abs(residual_y - residual), rhs_norm) || residual < residual_y); | 
|  | if (internal::is_same<RealScalar, float>::value) ++g_test_level; | 
|  | VERIFY(test_isApprox(residual_y, residual) || residual < residual_y); | 
|  | if (internal::is_same<RealScalar, float>::value) --g_test_level; | 
|  |  | 
|  | y.row(k) = (RealScalar(1) - 2 * NumTraits<RealScalar>::epsilon()) * x.row(k); | 
|  | residual_y = (m * y - rhs).norm(); | 
|  | VERIFY(test_isMuchSmallerThan(abs(residual_y - residual), rhs_norm) || residual < residual_y); | 
|  | if (internal::is_same<RealScalar, float>::value) ++g_test_level; | 
|  | VERIFY(test_isApprox(residual_y, residual) || residual < residual_y); | 
|  | if (internal::is_same<RealScalar, float>::value) --g_test_level; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // check minimal norm solutions, the input matrix m is only used to recover problem size | 
|  | template <typename MatrixType, int Options> | 
|  | void svd_min_norm(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime }; | 
|  |  | 
|  | typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType; | 
|  |  | 
|  | // generate a full-rank m x n problem with m<n | 
|  | enum { | 
|  | RankAtCompileTime2 = ColsAtCompileTime == Dynamic ? Dynamic : (ColsAtCompileTime) / 2 + 1, | 
|  | RowsAtCompileTime3 = ColsAtCompileTime == Dynamic ? Dynamic : ColsAtCompileTime + 1 | 
|  | }; | 
|  | typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2; | 
|  | typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2; | 
|  | typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T; | 
|  | Index rank = RankAtCompileTime2 == Dynamic ? internal::random<Index>(1, cols) : Index(RankAtCompileTime2); | 
|  | MatrixType2 m2(rank, cols); | 
|  | int guard = 0; | 
|  | do { | 
|  | m2.setRandom(); | 
|  | } while (SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank() != rank && (++guard) < 10); | 
|  | VERIFY(guard < 10); | 
|  |  | 
|  | RhsType2 rhs2 = RhsType2::Random(rank); | 
|  | // use QR to find a reference minimal norm solution | 
|  | HouseholderQR<MatrixType2T> qr(m2.adjoint()); | 
|  | Matrix<Scalar, Dynamic, 1> tmp = | 
|  | qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().adjoint().solve(rhs2); | 
|  | tmp.conservativeResize(cols); | 
|  | tmp.tail(cols - rank).setZero(); | 
|  | SolutionType x21 = qr.householderQ() * tmp; | 
|  | // now check with SVD | 
|  | SVD_STATIC_OPTIONS(MatrixType2, Options) svd2(m2); | 
|  | SolutionType x22 = svd2.solve(rhs2); | 
|  | VERIFY_IS_APPROX(m2 * x21, rhs2); | 
|  | VERIFY_IS_APPROX(m2 * x22, rhs2); | 
|  | VERIFY_IS_APPROX(x21, x22); | 
|  |  | 
|  | // Now check with a rank deficient matrix | 
|  | typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3; | 
|  | typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3; | 
|  | Index rows3 = RowsAtCompileTime3 == Dynamic ? internal::random<Index>(rank + 1, 2 * cols) : Index(RowsAtCompileTime3); | 
|  | Matrix<Scalar, RowsAtCompileTime3, Dynamic> C = Matrix<Scalar, RowsAtCompileTime3, Dynamic>::Random(rows3, rank); | 
|  | MatrixType3 m3 = C * m2; | 
|  | RhsType3 rhs3 = C * rhs2; | 
|  | SVD_STATIC_OPTIONS(MatrixType3, Options) svd3(m3); | 
|  | SolutionType x3 = svd3.solve(rhs3); | 
|  | VERIFY_IS_APPROX(m3 * x3, rhs3); | 
|  | VERIFY_IS_APPROX(m3 * x21, rhs3); | 
|  | VERIFY_IS_APPROX(m2 * x3, rhs2); | 
|  | VERIFY_IS_APPROX(x21, x3); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, typename SolverType> | 
|  | void svd_test_solvers(const MatrixType& m, const SolverType& solver) { | 
|  | Index rows, cols, cols2; | 
|  |  | 
|  | rows = m.rows(); | 
|  | cols = m.cols(); | 
|  |  | 
|  | if (MatrixType::ColsAtCompileTime == Dynamic) { | 
|  | cols2 = internal::random<int>(2, EIGEN_TEST_MAX_SIZE); | 
|  | } else { | 
|  | cols2 = cols; | 
|  | } | 
|  | typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> CMatrixType; | 
|  | check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2); | 
|  | } | 
|  |  | 
|  | // work around stupid msvc error when constructing at compile time an expression that involves | 
|  | // a division by zero, even if the numeric type has floating point | 
|  | template <typename Scalar> | 
|  | EIGEN_DONT_INLINE Scalar zero() { | 
|  | return Scalar(0); | 
|  | } | 
|  |  | 
|  | // workaround aggressive optimization in ICC | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE T sub(T a, T b) { | 
|  | return a - b; | 
|  | } | 
|  |  | 
|  | // This function verifies we don't iterate infinitely on nan/inf values, | 
|  | // and that info() returns InvalidInput. | 
|  | template <typename MatrixType> | 
|  | void svd_inf_nan() { | 
|  | SVD_STATIC_OPTIONS(MatrixType, ComputeFullU | ComputeFullV) svd; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | Scalar some_inf = Scalar(1) / zero<Scalar>(); | 
|  | VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf)); | 
|  | svd.compute(MatrixType::Constant(10, 10, some_inf)); | 
|  | VERIFY(svd.info() == InvalidInput); | 
|  |  | 
|  | Scalar nan = std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | VERIFY(nan != nan); | 
|  | svd.compute(MatrixType::Constant(10, 10, nan)); | 
|  | VERIFY(svd.info() == InvalidInput); | 
|  |  | 
|  | MatrixType m = MatrixType::Zero(10, 10); | 
|  | m(internal::random<int>(0, 9), internal::random<int>(0, 9)) = some_inf; | 
|  | svd.compute(m); | 
|  | VERIFY(svd.info() == InvalidInput); | 
|  |  | 
|  | m = MatrixType::Zero(10, 10); | 
|  | m(internal::random<int>(0, 9), internal::random<int>(0, 9)) = nan; | 
|  | svd.compute(m); | 
|  | VERIFY(svd.info() == InvalidInput); | 
|  |  | 
|  | // regression test for bug 791 | 
|  | m.resize(3, 3); | 
|  | m << 0, 2 * NumTraits<Scalar>::epsilon(), 0.5, 0, -0.5, 0, nan, 0, 0; | 
|  | svd.compute(m); | 
|  | VERIFY(svd.info() == InvalidInput); | 
|  |  | 
|  | Scalar min = (std::numeric_limits<Scalar>::min)(); | 
|  | m.resize(4, 4); | 
|  | m << 1, 0, 0, 0, 0, 3, 1, min, 1, 0, 1, nan, 0, nan, nan, 0; | 
|  | svd.compute(m); | 
|  | VERIFY(svd.info() == InvalidInput); | 
|  | } | 
|  |  | 
|  | // Regression test for bug 286: JacobiSVD loops indefinitely with some | 
|  | // matrices containing denormal numbers. | 
|  | template <typename> | 
|  | void svd_underoverflow() { | 
|  | #if defined __INTEL_COMPILER | 
|  | // shut up warning #239: floating point underflow | 
|  | #pragma warning push | 
|  | #pragma warning disable 239 | 
|  | #endif | 
|  | Matrix2d M; | 
|  | M << -7.90884e-313, -4.94e-324, 0, 5.60844e-313; | 
|  | SVD_STATIC_OPTIONS(Matrix2d, ComputeFullU | ComputeFullV) svd; | 
|  | svd.compute(M); | 
|  | CALL_SUBTEST(svd_check_full(M, svd)); | 
|  |  | 
|  | // Check all 2x2 matrices made with the following coefficients: | 
|  | VectorXd value_set(9); | 
|  | value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223; | 
|  | Array4i id(0, 0, 0, 0); | 
|  | int k = 0; | 
|  | do { | 
|  | M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3)); | 
|  | svd.compute(M); | 
|  | CALL_SUBTEST(svd_check_full(M, svd)); | 
|  |  | 
|  | id(k)++; | 
|  | if (id(k) >= value_set.size()) { | 
|  | while (k < 3 && id(k) >= value_set.size()) id(++k)++; | 
|  | id.head(k).setZero(); | 
|  | k = 0; | 
|  | } | 
|  |  | 
|  | } while ((id < int(value_set.size())).all()); | 
|  |  | 
|  | #if defined __INTEL_COMPILER | 
|  | #pragma warning pop | 
|  | #endif | 
|  |  | 
|  | // Check for overflow: | 
|  | Matrix3d M3; | 
|  | M3 << 4.4331978442502944e+307, -5.8585363752028680e+307, 6.4527017443412964e+307, 3.7841695601406358e+307, | 
|  | 2.4331702789740617e+306, -3.5235707140272905e+307, -8.7190887618028355e+307, -7.3453213709232193e+307, | 
|  | -2.4367363684472105e+307; | 
|  |  | 
|  | SVD_STATIC_OPTIONS(Matrix3d, ComputeFullU | ComputeFullV) svd3; | 
|  | svd3.compute(M3);  // just check we don't loop indefinitely | 
|  | CALL_SUBTEST(svd_check_full(M3, svd3)); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void svd_all_trivial_2x2(void (*cb)(const MatrixType&)) { | 
|  | MatrixType M; | 
|  | VectorXd value_set(3); | 
|  | value_set << 0, 1, -1; | 
|  | Array4i id(0, 0, 0, 0); | 
|  | int k = 0; | 
|  | do { | 
|  | M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3)); | 
|  |  | 
|  | cb(M); | 
|  |  | 
|  | id(k)++; | 
|  | if (id(k) >= value_set.size()) { | 
|  | while (k < 3 && id(k) >= value_set.size()) id(++k)++; | 
|  | id.head(k).setZero(); | 
|  | k = 0; | 
|  | } | 
|  |  | 
|  | } while ((id < int(value_set.size())).all()); | 
|  | } | 
|  |  | 
|  | template <typename> | 
|  | void svd_preallocate() { | 
|  | Vector3f v(3.f, 2.f, 1.f); | 
|  | MatrixXf m = v.asDiagonal(); | 
|  |  | 
|  | internal::set_is_malloc_allowed(false); | 
|  | VERIFY_RAISES_ASSERT(VectorXf tmp(10);) | 
|  | SVD_DEFAULT(MatrixXf) svd; | 
|  | internal::set_is_malloc_allowed(true); | 
|  | svd.compute(m); | 
|  | VERIFY_IS_APPROX(svd.singularValues(), v); | 
|  | VERIFY_RAISES_ASSERT(svd.matrixU()); | 
|  | VERIFY_RAISES_ASSERT(svd.matrixV()); | 
|  |  | 
|  | SVD_STATIC_OPTIONS(MatrixXf, ComputeFullU | ComputeFullV) svd2(3, 3); | 
|  | internal::set_is_malloc_allowed(false); | 
|  | svd2.compute(m); | 
|  | internal::set_is_malloc_allowed(true); | 
|  | VERIFY_IS_APPROX(svd2.singularValues(), v); | 
|  | VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); | 
|  | VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); | 
|  | internal::set_is_malloc_allowed(false); | 
|  | svd2.compute(m); | 
|  | internal::set_is_malloc_allowed(true); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int QRPreconditioner = 0> | 
|  | void svd_verify_assert_full_only(const MatrixType& input = MatrixType()) { | 
|  | enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime }; | 
|  |  | 
|  | typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType; | 
|  | RhsType rhs = RhsType::Zero(input.rows()); | 
|  | MatrixType m(input.rows(), input.cols()); | 
|  | svd_fill_random(m); | 
|  |  | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd0; | 
|  | VERIFY_RAISES_ASSERT((svd0.matrixU())); | 
|  | VERIFY_RAISES_ASSERT((svd0.singularValues())); | 
|  | VERIFY_RAISES_ASSERT((svd0.matrixV())); | 
|  | VERIFY_RAISES_ASSERT((svd0.solve(rhs))); | 
|  | VERIFY_RAISES_ASSERT((svd0.transpose().solve(rhs))); | 
|  | VERIFY_RAISES_ASSERT((svd0.adjoint().solve(rhs))); | 
|  |  | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd1(m); | 
|  | VERIFY_RAISES_ASSERT((svd1.matrixU())); | 
|  | VERIFY_RAISES_ASSERT((svd1.matrixV())); | 
|  | VERIFY_RAISES_ASSERT((svd1.solve(rhs))); | 
|  |  | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU) svdFullU(m); | 
|  | VERIFY_RAISES_ASSERT((svdFullU.matrixV())); | 
|  | VERIFY_RAISES_ASSERT((svdFullU.solve(rhs))); | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullV) svdFullV(m); | 
|  | VERIFY_RAISES_ASSERT((svdFullV.matrixU())); | 
|  | VERIFY_RAISES_ASSERT((svdFullV.solve(rhs))); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int QRPreconditioner = 0> | 
|  | void svd_verify_assert(const MatrixType& input = MatrixType()) { | 
|  | enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime }; | 
|  | typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType; | 
|  | RhsType rhs = RhsType::Zero(input.rows()); | 
|  | MatrixType m(input.rows(), input.cols()); | 
|  | svd_fill_random(m); | 
|  |  | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU) svdThinU(m); | 
|  | VERIFY_RAISES_ASSERT((svdThinU.matrixV())); | 
|  | VERIFY_RAISES_ASSERT((svdThinU.solve(rhs))); | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinV) svdThinV(m); | 
|  | VERIFY_RAISES_ASSERT((svdThinV.matrixU())); | 
|  | VERIFY_RAISES_ASSERT((svdThinV.solve(rhs))); | 
|  |  | 
|  | svd_verify_assert_full_only<MatrixType, QRPreconditioner>(m); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int Options> | 
|  | void svd_compute_checks(const MatrixType& m) { | 
|  | typedef SVD_STATIC_OPTIONS(MatrixType, Options) SVDType; | 
|  |  | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | DiagAtCompileTime = internal::min_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime), | 
|  | MatrixURowsAtCompileTime = SVDType::MatrixUType::RowsAtCompileTime, | 
|  | MatrixUColsAtCompileTime = SVDType::MatrixUType::ColsAtCompileTime, | 
|  | MatrixVRowsAtCompileTime = SVDType::MatrixVType::RowsAtCompileTime, | 
|  | MatrixVColsAtCompileTime = SVDType::MatrixVType::ColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | SVDType staticSvd(m); | 
|  |  | 
|  | VERIFY(MatrixURowsAtCompileTime == RowsAtCompileTime); | 
|  | VERIFY(MatrixVRowsAtCompileTime == ColsAtCompileTime); | 
|  | if (Options & ComputeThinU) VERIFY(MatrixUColsAtCompileTime == DiagAtCompileTime); | 
|  | if (Options & ComputeFullU) VERIFY(MatrixUColsAtCompileTime == RowsAtCompileTime); | 
|  | if (Options & ComputeThinV) VERIFY(MatrixVColsAtCompileTime == DiagAtCompileTime); | 
|  | if (Options & ComputeFullV) VERIFY(MatrixVColsAtCompileTime == ColsAtCompileTime); | 
|  |  | 
|  | if (Options & (ComputeThinU | ComputeFullU)) | 
|  | VERIFY(staticSvd.computeU()); | 
|  | else | 
|  | VERIFY(!staticSvd.computeU()); | 
|  | if (Options & (ComputeThinV | ComputeFullV)) | 
|  | VERIFY(staticSvd.computeV()); | 
|  | else | 
|  | VERIFY(!staticSvd.computeV()); | 
|  |  | 
|  | if (staticSvd.computeU()) VERIFY(staticSvd.matrixU().isUnitary()); | 
|  | if (staticSvd.computeV()) VERIFY(staticSvd.matrixV().isUnitary()); | 
|  |  | 
|  | if (staticSvd.computeU() && staticSvd.computeV()) { | 
|  | svd_test_solvers(m, staticSvd); | 
|  | svd_least_square<SVDType, MatrixType>(m); | 
|  | // svd_min_norm generates non-square matrices so it can't be used with NoQRPreconditioner | 
|  | if ((Options & internal::QRPreconditionerBits) != NoQRPreconditioner) svd_min_norm<MatrixType, Options>(m); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int QRPreconditioner = 0> | 
|  | void svd_thin_option_checks(const MatrixType& input) { | 
|  | MatrixType m(input.rows(), input.cols()); | 
|  | svd_fill_random(m); | 
|  |  | 
|  | svd_compute_checks<MatrixType, QRPreconditioner>(m); | 
|  | svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU>(m); | 
|  | svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinV>(m); | 
|  | svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV>(m); | 
|  |  | 
|  | svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV>(m); | 
|  | svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV>(m); | 
|  |  | 
|  | typedef SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) FullSvdType; | 
|  | FullSvdType fullSvd(m); | 
|  | svd_check_full(m, fullSvd); | 
|  | svd_compare_to_full<MatrixType, FullSvdType, QRPreconditioner | ComputeFullU | ComputeFullV>(m, fullSvd); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int QRPreconditioner = 0> | 
|  | void svd_option_checks_full_only(const MatrixType& input) { | 
|  | MatrixType m(input.rows(), input.cols()); | 
|  | svd_fill_random(m); | 
|  | svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU>(m); | 
|  | svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV>(m); | 
|  | svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m); | 
|  |  | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m); | 
|  | svd_check_full(m, fullSvd); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int QRPreconditioner = 0> | 
|  | void svd_check_max_size_matrix(int initialRows, int initialCols) { | 
|  | enum { | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | int rows = MaxRowsAtCompileTime == Dynamic ? initialRows : (std::min)(initialRows, (int)MaxRowsAtCompileTime); | 
|  | int cols = MaxColsAtCompileTime == Dynamic ? initialCols : (std::min)(initialCols, (int)MaxColsAtCompileTime); | 
|  |  | 
|  | MatrixType m(rows, cols); | 
|  | svd_fill_random(m); | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV) thinSvd(m); | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV) mixedSvd1(m); | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV) mixedSvd2(m); | 
|  | SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m); | 
|  |  | 
|  | MatrixType n(MaxRowsAtCompileTime, MaxColsAtCompileTime); | 
|  | svd_fill_random(n); | 
|  | thinSvd.compute(n); | 
|  | mixedSvd1.compute(n); | 
|  | mixedSvd2.compute(n); | 
|  | fullSvd.compute(n); | 
|  |  | 
|  | MatrixX<typename MatrixType::Scalar> dynamicMatrix(MaxRowsAtCompileTime + 1, MaxColsAtCompileTime + 1); | 
|  |  | 
|  | VERIFY_RAISES_ASSERT(thinSvd.compute(dynamicMatrix)); | 
|  | VERIFY_RAISES_ASSERT(mixedSvd1.compute(dynamicMatrix)); | 
|  | VERIFY_RAISES_ASSERT(mixedSvd2.compute(dynamicMatrix)); | 
|  | VERIFY_RAISES_ASSERT(fullSvd.compute(dynamicMatrix)); | 
|  | } | 
|  |  | 
|  | template <typename SvdType, typename MatrixType> | 
|  | void svd_verify_constructor_options_assert(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | Index rows = m.rows(); | 
|  |  | 
|  | enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime }; | 
|  |  | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType; | 
|  | RhsType rhs(rows); | 
|  | svd_fill_random(rhs); | 
|  | SvdType svd; | 
|  | VERIFY_RAISES_ASSERT(svd.matrixU()) | 
|  | VERIFY_RAISES_ASSERT(svd.singularValues()) | 
|  | VERIFY_RAISES_ASSERT(svd.matrixV()) | 
|  | VERIFY_RAISES_ASSERT(svd.solve(rhs)) | 
|  | VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs)) | 
|  | VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs)) | 
|  | } | 
|  |  | 
|  | #undef SVD_DEFAULT | 
|  | #undef SVD_FOR_MIN_NORM | 
|  | #undef SVD_STATIC_OPTIONS |