| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template <typename MatrixType> | 
 | void matrixVisitor(const MatrixType& p) { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   Index rows = p.rows(); | 
 |   Index cols = p.cols(); | 
 |  | 
 |   // construct a random matrix where all coefficients are different | 
 |   MatrixType m; | 
 |   m = MatrixType::Random(rows, cols); | 
 |   for (Index i = 0; i < m.size(); i++) | 
 |     for (Index i2 = 0; i2 < i; i2++) | 
 |       while (numext::equal_strict(m(i), m(i2)))  // yes, strict equality | 
 |         m(i) = internal::random<Scalar>(); | 
 |  | 
 |   Scalar minc = Scalar(1000), maxc = Scalar(-1000); | 
 |   Index minrow = 0, mincol = 0, maxrow = 0, maxcol = 0; | 
 |   for (Index j = 0; j < cols; j++) | 
 |     for (Index i = 0; i < rows; i++) { | 
 |       if (m(i, j) < minc) { | 
 |         minc = m(i, j); | 
 |         minrow = i; | 
 |         mincol = j; | 
 |       } | 
 |       if (m(i, j) > maxc) { | 
 |         maxc = m(i, j); | 
 |         maxrow = i; | 
 |         maxcol = j; | 
 |       } | 
 |     } | 
 |   Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; | 
 |   Scalar eigen_minc, eigen_maxc; | 
 |   eigen_minc = m.minCoeff(&eigen_minrow, &eigen_mincol); | 
 |   eigen_maxc = m.maxCoeff(&eigen_maxrow, &eigen_maxcol); | 
 |   VERIFY(minrow == eigen_minrow); | 
 |   VERIFY(maxrow == eigen_maxrow); | 
 |   VERIFY(mincol == eigen_mincol); | 
 |   VERIFY(maxcol == eigen_maxcol); | 
 |   VERIFY_IS_APPROX(minc, eigen_minc); | 
 |   VERIFY_IS_APPROX(maxc, eigen_maxc); | 
 |   VERIFY_IS_APPROX(minc, m.minCoeff()); | 
 |   VERIFY_IS_APPROX(maxc, m.maxCoeff()); | 
 |  | 
 |   eigen_maxc = (m.adjoint() * m).maxCoeff(&eigen_maxrow, &eigen_maxcol); | 
 |   Index maxrow2 = 0, maxcol2 = 0; | 
 |   eigen_maxc = (m.adjoint() * m).eval().maxCoeff(&maxrow2, &maxcol2); | 
 |   VERIFY(maxrow2 == eigen_maxrow); | 
 |   VERIFY(maxcol2 == eigen_maxcol); | 
 |  | 
 |   if (!NumTraits<Scalar>::IsInteger && m.size() > 2) { | 
 |     // Test NaN propagation by replacing an element with NaN. | 
 |     bool stop = false; | 
 |     for (Index j = 0; j < cols && !stop; ++j) { | 
 |       for (Index i = 0; i < rows && !stop; ++i) { | 
 |         if (!(j == mincol && i == minrow) && !(j == maxcol && i == maxrow)) { | 
 |           m(i, j) = NumTraits<Scalar>::quiet_NaN(); | 
 |           stop = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol); | 
 |     eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol); | 
 |     VERIFY(minrow == eigen_minrow); | 
 |     VERIFY(maxrow == eigen_maxrow); | 
 |     VERIFY(mincol == eigen_mincol); | 
 |     VERIFY(maxcol == eigen_maxcol); | 
 |     VERIFY_IS_APPROX(minc, eigen_minc); | 
 |     VERIFY_IS_APPROX(maxc, eigen_maxc); | 
 |     VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>()); | 
 |     VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>()); | 
 |  | 
 |     eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol); | 
 |     eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol); | 
 |     VERIFY(minrow != eigen_minrow || mincol != eigen_mincol); | 
 |     VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol); | 
 |     VERIFY((numext::isnan)(eigen_minc)); | 
 |     VERIFY((numext::isnan)(eigen_maxc)); | 
 |  | 
 |     // Test matrix of all NaNs. | 
 |     m.fill(NumTraits<Scalar>::quiet_NaN()); | 
 |     eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol); | 
 |     eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol); | 
 |     VERIFY(eigen_minrow == 0); | 
 |     VERIFY(eigen_maxrow == 0); | 
 |     VERIFY(eigen_mincol == 0); | 
 |     VERIFY(eigen_maxcol == 0); | 
 |     VERIFY((numext::isnan)(eigen_minc)); | 
 |     VERIFY((numext::isnan)(eigen_maxc)); | 
 |  | 
 |     eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol); | 
 |     eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol); | 
 |     VERIFY(eigen_minrow == 0); | 
 |     VERIFY(eigen_maxrow == 0); | 
 |     VERIFY(eigen_mincol == 0); | 
 |     VERIFY(eigen_maxcol == 0); | 
 |     VERIFY((numext::isnan)(eigen_minc)); | 
 |     VERIFY((numext::isnan)(eigen_maxc)); | 
 |  | 
 |     eigen_minc = m.template minCoeff<PropagateFast>(&eigen_minrow, &eigen_mincol); | 
 |     eigen_maxc = m.template maxCoeff<PropagateFast>(&eigen_maxrow, &eigen_maxcol); | 
 |     VERIFY(eigen_minrow == 0); | 
 |     VERIFY(eigen_maxrow == 0); | 
 |     VERIFY(eigen_mincol == 0); | 
 |     VERIFY(eigen_maxcol == 0); | 
 |     VERIFY((numext::isnan)(eigen_minc)); | 
 |     VERIFY((numext::isnan)(eigen_maxc)); | 
 |   } | 
 | } | 
 |  | 
 | template <typename VectorType> | 
 | void vectorVisitor(const VectorType& w) { | 
 |   typedef typename VectorType::Scalar Scalar; | 
 |  | 
 |   Index size = w.size(); | 
 |  | 
 |   // construct a random vector where all coefficients are different | 
 |   VectorType v; | 
 |   v = VectorType::Random(size); | 
 |   for (Index i = 0; i < size; i++) | 
 |     for (Index i2 = 0; i2 < i; i2++) | 
 |       while (v(i) == v(i2))  // yes, == | 
 |         v(i) = internal::random<Scalar>(); | 
 |  | 
 |   Scalar minc = v(0), maxc = v(0); | 
 |   Index minidx = 0, maxidx = 0; | 
 |   for (Index i = 0; i < size; i++) { | 
 |     if (v(i) < minc) { | 
 |       minc = v(i); | 
 |       minidx = i; | 
 |     } | 
 |     if (v(i) > maxc) { | 
 |       maxc = v(i); | 
 |       maxidx = i; | 
 |     } | 
 |   } | 
 |   Index eigen_minidx, eigen_maxidx; | 
 |   Scalar eigen_minc, eigen_maxc; | 
 |   eigen_minc = v.minCoeff(&eigen_minidx); | 
 |   eigen_maxc = v.maxCoeff(&eigen_maxidx); | 
 |   VERIFY(minidx == eigen_minidx); | 
 |   VERIFY(maxidx == eigen_maxidx); | 
 |   VERIFY_IS_APPROX(minc, eigen_minc); | 
 |   VERIFY_IS_APPROX(maxc, eigen_maxc); | 
 |   VERIFY_IS_APPROX(minc, v.minCoeff()); | 
 |   VERIFY_IS_APPROX(maxc, v.maxCoeff()); | 
 |  | 
 |   Index idx0 = internal::random<Index>(0, size - 1); | 
 |   Index idx1 = eigen_minidx; | 
 |   Index idx2 = eigen_maxidx; | 
 |   VectorType v1(v), v2(v); | 
 |   v1(idx0) = v1(idx1); | 
 |   v2(idx0) = v2(idx2); | 
 |   v1.minCoeff(&eigen_minidx); | 
 |   v2.maxCoeff(&eigen_maxidx); | 
 |   VERIFY(eigen_minidx == (std::min)(idx0, idx1)); | 
 |   VERIFY(eigen_maxidx == (std::min)(idx0, idx2)); | 
 |  | 
 |   if (!NumTraits<Scalar>::IsInteger && size > 2) { | 
 |     // Test NaN propagation by replacing an element with NaN. | 
 |     for (Index i = 0; i < size; ++i) { | 
 |       if (i != minidx && i != maxidx) { | 
 |         v(i) = NumTraits<Scalar>::quiet_NaN(); | 
 |         break; | 
 |       } | 
 |     } | 
 |     eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx); | 
 |     eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx); | 
 |     VERIFY(minidx == eigen_minidx); | 
 |     VERIFY(maxidx == eigen_maxidx); | 
 |     VERIFY_IS_APPROX(minc, eigen_minc); | 
 |     VERIFY_IS_APPROX(maxc, eigen_maxc); | 
 |     VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>()); | 
 |     VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>()); | 
 |  | 
 |     eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx); | 
 |     eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx); | 
 |     VERIFY(minidx != eigen_minidx); | 
 |     VERIFY(maxidx != eigen_maxidx); | 
 |     VERIFY((numext::isnan)(eigen_minc)); | 
 |     VERIFY((numext::isnan)(eigen_maxc)); | 
 |   } | 
 | } | 
 |  | 
 | template <typename Derived, bool Vectorizable> | 
 | struct TrackedVisitor { | 
 |   using Scalar = typename DenseBase<Derived>::Scalar; | 
 |   static constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size; | 
 |   static constexpr bool RowMajor = Derived::IsRowMajor; | 
 |  | 
 |   void init(Scalar v, Index i, Index j) { return this->operator()(v, i, j); } | 
 |   template <typename Packet> | 
 |   void initpacket(Packet p, Index i, Index j) { | 
 |     return this->packet(p, i, j); | 
 |   } | 
 |   void operator()(Scalar v, Index i, Index j) { | 
 |     EIGEN_UNUSED_VARIABLE(v) | 
 |     visited.emplace_back(i, j); | 
 |     scalarOps++; | 
 |   } | 
 |  | 
 |   template <typename Packet> | 
 |   void packet(Packet p, Index i, Index j) { | 
 |     EIGEN_UNUSED_VARIABLE(p) | 
 |     for (int k = 0; k < PacketSize; k++) | 
 |       if (RowMajor) | 
 |         visited.emplace_back(i, j + k); | 
 |       else | 
 |         visited.emplace_back(i + k, j); | 
 |     vectorOps++; | 
 |   } | 
 |   std::vector<std::pair<Index, Index>> visited; | 
 |   Index scalarOps = 0; | 
 |   Index vectorOps = 0; | 
 | }; | 
 |  | 
 | namespace Eigen { | 
 | namespace internal { | 
 |  | 
 | template <typename T, bool Vectorizable> | 
 | struct functor_traits<TrackedVisitor<T, Vectorizable>> { | 
 |   enum { PacketAccess = Vectorizable, LinearAccess = false, Cost = 1 }; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace Eigen | 
 |  | 
 | template <typename Derived, bool Vectorized> | 
 | void checkOptimalTraversal_impl(const DenseBase<Derived>& mat) { | 
 |   using Scalar = typename DenseBase<Derived>::Scalar; | 
 |   static constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size; | 
 |   static constexpr bool RowMajor = Derived::IsRowMajor; | 
 |   Derived X(mat.rows(), mat.cols()); | 
 |   X.setRandom(); | 
 |   TrackedVisitor<Derived, Vectorized> visitor; | 
 |   visitor.visited.reserve(X.size()); | 
 |   X.visit(visitor); | 
 |   Index count = 0; | 
 |   for (Index j = 0; j < X.outerSize(); ++j) { | 
 |     for (Index i = 0; i < X.innerSize(); ++i) { | 
 |       Index r = RowMajor ? j : i; | 
 |       Index c = RowMajor ? i : j; | 
 |       VERIFY_IS_EQUAL(visitor.visited[count].first, r); | 
 |       VERIFY_IS_EQUAL(visitor.visited[count].second, c); | 
 |       ++count; | 
 |     } | 
 |   } | 
 |   Index vectorOps = Vectorized ? ((X.innerSize() / PacketSize) * X.outerSize()) : 0; | 
 |   Index scalarOps = X.size() - (vectorOps * PacketSize); | 
 |   VERIFY_IS_EQUAL(vectorOps, visitor.vectorOps); | 
 |   VERIFY_IS_EQUAL(scalarOps, visitor.scalarOps); | 
 | } | 
 |  | 
 | void checkOptimalTraversal() { | 
 |   using Scalar = float; | 
 |   constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size; | 
 |   // use sizes that mix vector and scalar ops | 
 |   constexpr int Rows = 3 * PacketSize + 1; | 
 |   constexpr int Cols = 4 * PacketSize + 1; | 
 |   int rows = internal::random(PacketSize + 1, EIGEN_TEST_MAX_SIZE); | 
 |   int cols = internal::random(PacketSize + 1, EIGEN_TEST_MAX_SIZE); | 
 |  | 
 |   using UnrollColMajor = Matrix<Scalar, Rows, Cols, ColMajor>; | 
 |   using UnrollRowMajor = Matrix<Scalar, Rows, Cols, RowMajor>; | 
 |   using DynamicColMajor = Matrix<Scalar, Dynamic, Dynamic, ColMajor>; | 
 |   using DynamicRowMajor = Matrix<Scalar, Dynamic, Dynamic, RowMajor>; | 
 |  | 
 |   // Scalar-only visitors | 
 |   checkOptimalTraversal_impl<UnrollColMajor, false>(UnrollColMajor(Rows, Cols)); | 
 |   checkOptimalTraversal_impl<UnrollRowMajor, false>(UnrollRowMajor(Rows, Cols)); | 
 |   checkOptimalTraversal_impl<DynamicColMajor, false>(DynamicColMajor(rows, cols)); | 
 |   checkOptimalTraversal_impl<DynamicRowMajor, false>(DynamicRowMajor(rows, cols)); | 
 |  | 
 |   // Vectorized visitors | 
 |   checkOptimalTraversal_impl<UnrollColMajor, true>(UnrollColMajor(Rows, Cols)); | 
 |   checkOptimalTraversal_impl<UnrollRowMajor, true>(UnrollRowMajor(Rows, Cols)); | 
 |   checkOptimalTraversal_impl<DynamicColMajor, true>(DynamicColMajor(rows, cols)); | 
 |   checkOptimalTraversal_impl<DynamicRowMajor, true>(DynamicRowMajor(rows, cols)); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(visitor) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1(matrixVisitor(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_2(matrixVisitor(Matrix2f())); | 
 |     CALL_SUBTEST_3(matrixVisitor(Matrix4d())); | 
 |     CALL_SUBTEST_4(matrixVisitor(MatrixXd(8, 12))); | 
 |     CALL_SUBTEST_5(matrixVisitor(Matrix<double, Dynamic, Dynamic, RowMajor>(20, 20))); | 
 |     CALL_SUBTEST_6(matrixVisitor(MatrixXi(8, 12))); | 
 |   } | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_7(vectorVisitor(Vector4f())); | 
 |     CALL_SUBTEST_7(vectorVisitor(Matrix<int, 12, 1>())); | 
 |     CALL_SUBTEST_8(vectorVisitor(VectorXd(10))); | 
 |     CALL_SUBTEST_9(vectorVisitor(RowVectorXd(10))); | 
 |     CALL_SUBTEST_10(vectorVisitor(VectorXf(33))); | 
 |   } | 
 |   CALL_SUBTEST_11(checkOptimalTraversal()); | 
 | } |