| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> | 
 |  | 
 | #include <stdio.h> | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/NonLinearOptimization> | 
 |  | 
 | // This disables some useless Warnings on MSVC. | 
 | // It is intended to be done for this test only. | 
 | #include <Eigen/src/Core/util/DisableStupidWarnings.h> | 
 |  | 
 | // tolerance for checking number of iterations | 
 | #define LM_EVAL_COUNT_TOL 2 | 
 |  | 
 | #define LM_CHECK_N_ITERS(SOLVER, NFEV, NJEV)         \ | 
 |   {                                                  \ | 
 |     VERIFY(SOLVER.nfev <= NFEV * LM_EVAL_COUNT_TOL); \ | 
 |     VERIFY(SOLVER.njev <= NJEV * LM_EVAL_COUNT_TOL); \ | 
 |   } | 
 |  | 
 | int fcn_chkder(const VectorXd &x, VectorXd &fvec, MatrixXd &fjac, int iflag) { | 
 |   /*      subroutine fcn for chkder example. */ | 
 |  | 
 |   int i; | 
 |   assert(15 == fvec.size()); | 
 |   assert(3 == x.size()); | 
 |   double tmp1, tmp2, tmp3, tmp4; | 
 |   static const double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, | 
 |                                3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34,   2.1,    4.39}; | 
 |  | 
 |   if (iflag == 0) return 0; | 
 |  | 
 |   if (iflag != 2) | 
 |     for (i = 0; i < 15; i++) { | 
 |       tmp1 = i + 1; | 
 |       tmp2 = 16 - i - 1; | 
 |       tmp3 = tmp1; | 
 |       if (i >= 8) tmp3 = tmp2; | 
 |       fvec[i] = y[i] - (x[0] + tmp1 / (x[1] * tmp2 + x[2] * tmp3)); | 
 |     } | 
 |   else { | 
 |     for (i = 0; i < 15; i++) { | 
 |       tmp1 = i + 1; | 
 |       tmp2 = 16 - i - 1; | 
 |  | 
 |       /* error introduced into next statement for illustration. */ | 
 |       /* corrected statement should read    tmp3 = tmp1 . */ | 
 |  | 
 |       tmp3 = tmp2; | 
 |       if (i >= 8) tmp3 = tmp2; | 
 |       tmp4 = (x[1] * tmp2 + x[2] * tmp3); | 
 |       tmp4 = tmp4 * tmp4; | 
 |       fjac(i, 0) = -1.; | 
 |       fjac(i, 1) = tmp1 * tmp2 / tmp4; | 
 |       fjac(i, 2) = tmp1 * tmp3 / tmp4; | 
 |     } | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | void testChkder() { | 
 |   const int m = 15, n = 3; | 
 |   VectorXd x(n), fvec(m), xp, fvecp(m), err; | 
 |   MatrixXd fjac(m, n); | 
 |   VectorXi ipvt; | 
 |  | 
 |   /*      the following values should be suitable for */ | 
 |   /*      checking the jacobian matrix. */ | 
 |   x << 9.2e-1, 1.3e-1, 5.4e-1; | 
 |  | 
 |   internal::chkder(x, fvec, fjac, xp, fvecp, 1, err); | 
 |   fcn_chkder(x, fvec, fjac, 1); | 
 |   fcn_chkder(x, fvec, fjac, 2); | 
 |   fcn_chkder(xp, fvecp, fjac, 1); | 
 |   internal::chkder(x, fvec, fjac, xp, fvecp, 2, err); | 
 |  | 
 |   fvecp -= fvec; | 
 |  | 
 |   // check those | 
 |   VectorXd fvec_ref(m), fvecp_ref(m), err_ref(m); | 
 |   fvec_ref << -1.181606, -1.429655, -1.606344, -1.745269, -1.840654, -1.921586, -1.984141, -2.022537, -2.468977, | 
 |       -2.827562, -3.473582, -4.437612, -6.047662, -9.267761, -18.91806; | 
 |   fvecp_ref << -7.724666e-09, -3.432406e-09, -2.034843e-10, 2.313685e-09, 4.331078e-09, 5.984096e-09, 7.363281e-09, | 
 |       8.53147e-09, 1.488591e-08, 2.33585e-08, 3.522012e-08, 5.301255e-08, 8.26666e-08, 1.419747e-07, 3.19899e-07; | 
 |   err_ref << 0.1141397, 0.09943516, 0.09674474, 0.09980447, 0.1073116, 0.1220445, 0.1526814, 1, 1, 1, 1, 1, 1, 1, 1; | 
 |  | 
 |   VERIFY_IS_APPROX(fvec, fvec_ref); | 
 |   VERIFY_IS_APPROX(fvecp, fvecp_ref); | 
 |   VERIFY_IS_APPROX(err, err_ref); | 
 | } | 
 |  | 
 | // Generic functor | 
 | template <typename Scalar_, int NX = Dynamic, int NY = Dynamic> | 
 | struct Functor { | 
 |   typedef Scalar_ Scalar; | 
 |   enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY }; | 
 |   typedef Matrix<Scalar, InputsAtCompileTime, 1> InputType; | 
 |   typedef Matrix<Scalar, ValuesAtCompileTime, 1> ValueType; | 
 |   typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; | 
 |  | 
 |   const int m_inputs, m_values; | 
 |  | 
 |   Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} | 
 |   Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {} | 
 |  | 
 |   int inputs() const { return m_inputs; } | 
 |   int values() const { return m_values; } | 
 |  | 
 |   // you should define that in the subclass : | 
 |   //  void operator() (const InputType& x, ValueType* v, JacobianType* _j=0) const; | 
 | }; | 
 |  | 
 | struct lmder_functor : Functor<double> { | 
 |   lmder_functor(void) : Functor<double>(3, 15) {} | 
 |   int operator()(const VectorXd &x, VectorXd &fvec) const { | 
 |     double tmp1, tmp2, tmp3; | 
 |     static const double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, | 
 |                                  3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34,   2.1,    4.39}; | 
 |  | 
 |     for (int i = 0; i < values(); i++) { | 
 |       tmp1 = i + 1; | 
 |       tmp2 = 16 - i - 1; | 
 |       tmp3 = (i >= 8) ? tmp2 : tmp1; | 
 |       fvec[i] = y[i] - (x[0] + tmp1 / (x[1] * tmp2 + x[2] * tmp3)); | 
 |     } | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int df(const VectorXd &x, MatrixXd &fjac) const { | 
 |     double tmp1, tmp2, tmp3, tmp4; | 
 |     for (int i = 0; i < values(); i++) { | 
 |       tmp1 = i + 1; | 
 |       tmp2 = 16 - i - 1; | 
 |       tmp3 = (i >= 8) ? tmp2 : tmp1; | 
 |       tmp4 = (x[1] * tmp2 + x[2] * tmp3); | 
 |       tmp4 = tmp4 * tmp4; | 
 |       fjac(i, 0) = -1; | 
 |       fjac(i, 1) = tmp1 * tmp2 / tmp4; | 
 |       fjac(i, 2) = tmp1 * tmp3 / tmp4; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 |  | 
 | void testLmder1() { | 
 |   int n = 3, info; | 
 |  | 
 |   VectorXd x; | 
 |  | 
 |   /* the following starting values provide a rough fit. */ | 
 |   x.setConstant(n, 1.); | 
 |  | 
 |   // do the computation | 
 |   lmder_functor functor; | 
 |   LevenbergMarquardt<lmder_functor> lm(functor); | 
 |   info = lm.lmder1(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 6, 5); | 
 |  | 
 |   // check norm | 
 |   VERIFY_IS_APPROX(lm.fvec.blueNorm(), 0.09063596); | 
 |  | 
 |   // check x | 
 |   VectorXd x_ref(n); | 
 |   x_ref << 0.08241058, 1.133037, 2.343695; | 
 |   VERIFY_IS_APPROX(x, x_ref); | 
 | } | 
 |  | 
 | void testLmder() { | 
 |   const int m = 15, n = 3; | 
 |   int info; | 
 |   double fnorm, covfac; | 
 |   VectorXd x; | 
 |  | 
 |   /* the following starting values provide a rough fit. */ | 
 |   x.setConstant(n, 1.); | 
 |  | 
 |   // do the computation | 
 |   lmder_functor functor; | 
 |   LevenbergMarquardt<lmder_functor> lm(functor); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return values | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 6, 5); | 
 |  | 
 |   // check norm | 
 |   fnorm = lm.fvec.blueNorm(); | 
 |   VERIFY_IS_APPROX(fnorm, 0.09063596); | 
 |  | 
 |   // check x | 
 |   VectorXd x_ref(n); | 
 |   x_ref << 0.08241058, 1.133037, 2.343695; | 
 |   VERIFY_IS_APPROX(x, x_ref); | 
 |  | 
 |   // check covariance | 
 |   covfac = fnorm * fnorm / (m - n); | 
 |   internal::covar(lm.fjac, lm.permutation.indices());  // TODO : move this as a function of lm | 
 |  | 
 |   MatrixXd cov_ref(n, n); | 
 |   cov_ref << 0.0001531202, 0.002869941, -0.002656662, 0.002869941, 0.09480935, -0.09098995, -0.002656662, -0.09098995, | 
 |       0.08778727; | 
 |  | 
 |   //  std::cout << fjac*covfac << std::endl; | 
 |  | 
 |   MatrixXd cov; | 
 |   cov = covfac * lm.fjac.topLeftCorner<n, n>(); | 
 |   VERIFY_IS_APPROX(cov, cov_ref); | 
 |   // TODO: why isn't this allowed ? : | 
 |   // VERIFY_IS_APPROX( covfac*fjac.topLeftCorner<n,n>() , cov_ref); | 
 | } | 
 |  | 
 | struct hybrj_functor : Functor<double> { | 
 |   hybrj_functor(void) : Functor<double>(9, 9) {} | 
 |  | 
 |   int operator()(const VectorXd &x, VectorXd &fvec) { | 
 |     double temp, temp1, temp2; | 
 |     const VectorXd::Index n = x.size(); | 
 |     assert(fvec.size() == n); | 
 |     for (VectorXd::Index k = 0; k < n; k++) { | 
 |       temp = (3. - 2. * x[k]) * x[k]; | 
 |       temp1 = 0.; | 
 |       if (k) temp1 = x[k - 1]; | 
 |       temp2 = 0.; | 
 |       if (k != n - 1) temp2 = x[k + 1]; | 
 |       fvec[k] = temp - temp1 - 2. * temp2 + 1.; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &x, MatrixXd &fjac) { | 
 |     const VectorXd::Index n = x.size(); | 
 |     assert(fjac.rows() == n); | 
 |     assert(fjac.cols() == n); | 
 |     for (VectorXd::Index k = 0; k < n; k++) { | 
 |       for (VectorXd::Index j = 0; j < n; j++) fjac(k, j) = 0.; | 
 |       fjac(k, k) = 3. - 4. * x[k]; | 
 |       if (k) fjac(k, k - 1) = -1.; | 
 |       if (k != n - 1) fjac(k, k + 1) = -2.; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 |  | 
 | void testHybrj1() { | 
 |   const int n = 9; | 
 |   int info; | 
 |   VectorXd x(n); | 
 |  | 
 |   /* the following starting values provide a rough fit. */ | 
 |   x.setConstant(n, -1.); | 
 |  | 
 |   // do the computation | 
 |   hybrj_functor functor; | 
 |   HybridNonLinearSolver<hybrj_functor> solver(functor); | 
 |   info = solver.hybrj1(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(solver, 11, 1); | 
 |  | 
 |   // check norm | 
 |   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08); | 
 |  | 
 |   // check x | 
 |   VectorXd x_ref(n); | 
 |   x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; | 
 |   VERIFY_IS_APPROX(x, x_ref); | 
 | } | 
 |  | 
 | void testHybrj() { | 
 |   const int n = 9; | 
 |   int info; | 
 |   VectorXd x(n); | 
 |  | 
 |   /* the following starting values provide a rough fit. */ | 
 |   x.setConstant(n, -1.); | 
 |  | 
 |   // do the computation | 
 |   hybrj_functor functor; | 
 |   HybridNonLinearSolver<hybrj_functor> solver(functor); | 
 |   solver.diag.setConstant(n, 1.); | 
 |   solver.useExternalScaling = true; | 
 |   info = solver.solve(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(solver, 11, 1); | 
 |  | 
 |   // check norm | 
 |   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08); | 
 |  | 
 |   // check x | 
 |   VectorXd x_ref(n); | 
 |   x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; | 
 |   VERIFY_IS_APPROX(x, x_ref); | 
 | } | 
 |  | 
 | struct hybrd_functor : Functor<double> { | 
 |   hybrd_functor(void) : Functor<double>(9, 9) {} | 
 |   int operator()(const VectorXd &x, VectorXd &fvec) const { | 
 |     double temp, temp1, temp2; | 
 |     const VectorXd::Index n = x.size(); | 
 |  | 
 |     assert(fvec.size() == n); | 
 |     for (VectorXd::Index k = 0; k < n; k++) { | 
 |       temp = (3. - 2. * x[k]) * x[k]; | 
 |       temp1 = 0.; | 
 |       if (k) temp1 = x[k - 1]; | 
 |       temp2 = 0.; | 
 |       if (k != n - 1) temp2 = x[k + 1]; | 
 |       fvec[k] = temp - temp1 - 2. * temp2 + 1.; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 |  | 
 | void testHybrd1() { | 
 |   int n = 9, info; | 
 |   VectorXd x(n); | 
 |  | 
 |   /* the following starting values provide a rough solution. */ | 
 |   x.setConstant(n, -1.); | 
 |  | 
 |   // do the computation | 
 |   hybrd_functor functor; | 
 |   HybridNonLinearSolver<hybrd_functor> solver(functor); | 
 |   info = solver.hybrd1(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   VERIFY(solver.nfev <= 20 * LM_EVAL_COUNT_TOL); | 
 |  | 
 |   // check norm | 
 |   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08); | 
 |  | 
 |   // check x | 
 |   VectorXd x_ref(n); | 
 |   x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; | 
 |   VERIFY_IS_APPROX(x, x_ref); | 
 | } | 
 |  | 
 | void testHybrd() { | 
 |   const int n = 9; | 
 |   int info; | 
 |   VectorXd x; | 
 |  | 
 |   /* the following starting values provide a rough fit. */ | 
 |   x.setConstant(n, -1.); | 
 |  | 
 |   // do the computation | 
 |   hybrd_functor functor; | 
 |   HybridNonLinearSolver<hybrd_functor> solver(functor); | 
 |   solver.parameters.nb_of_subdiagonals = 1; | 
 |   solver.parameters.nb_of_superdiagonals = 1; | 
 |   solver.diag.setConstant(n, 1.); | 
 |   solver.useExternalScaling = true; | 
 |   info = solver.solveNumericalDiff(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   VERIFY(solver.nfev <= 14 * LM_EVAL_COUNT_TOL); | 
 |  | 
 |   // check norm | 
 |   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08); | 
 |  | 
 |   // check x | 
 |   VectorXd x_ref(n); | 
 |   x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; | 
 |   VERIFY_IS_APPROX(x, x_ref); | 
 | } | 
 |  | 
 | struct lmstr_functor : Functor<double> { | 
 |   lmstr_functor(void) : Functor<double>(3, 15) {} | 
 |   int operator()(const VectorXd &x, VectorXd &fvec) { | 
 |     /*  subroutine fcn for lmstr1 example. */ | 
 |     double tmp1, tmp2, tmp3; | 
 |     static const double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, | 
 |                                  3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34,   2.1,    4.39}; | 
 |  | 
 |     assert(15 == fvec.size()); | 
 |     assert(3 == x.size()); | 
 |  | 
 |     for (int i = 0; i < 15; i++) { | 
 |       tmp1 = i + 1; | 
 |       tmp2 = 16 - i - 1; | 
 |       tmp3 = (i >= 8) ? tmp2 : tmp1; | 
 |       fvec[i] = y[i] - (x[0] + tmp1 / (x[1] * tmp2 + x[2] * tmp3)); | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &x, VectorXd &jac_row, VectorXd::Index rownb) { | 
 |     assert(x.size() == 3); | 
 |     assert(jac_row.size() == x.size()); | 
 |     double tmp1, tmp2, tmp3, tmp4; | 
 |  | 
 |     VectorXd::Index i = rownb - 2; | 
 |     tmp1 = i + 1; | 
 |     tmp2 = 16 - i - 1; | 
 |     tmp3 = (i >= 8) ? tmp2 : tmp1; | 
 |     tmp4 = (x[1] * tmp2 + x[2] * tmp3); | 
 |     tmp4 = tmp4 * tmp4; | 
 |     jac_row[0] = -1; | 
 |     jac_row[1] = tmp1 * tmp2 / tmp4; | 
 |     jac_row[2] = tmp1 * tmp3 / tmp4; | 
 |     return 0; | 
 |   } | 
 | }; | 
 |  | 
 | void testLmstr1() { | 
 |   const int n = 3; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* the following starting values provide a rough fit. */ | 
 |   x.setConstant(n, 1.); | 
 |  | 
 |   // do the computation | 
 |   lmstr_functor functor; | 
 |   LevenbergMarquardt<lmstr_functor> lm(functor); | 
 |   info = lm.lmstr1(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 6, 5); | 
 |  | 
 |   // check norm | 
 |   VERIFY_IS_APPROX(lm.fvec.blueNorm(), 0.09063596); | 
 |  | 
 |   // check x | 
 |   VectorXd x_ref(n); | 
 |   x_ref << 0.08241058, 1.133037, 2.343695; | 
 |   VERIFY_IS_APPROX(x, x_ref); | 
 | } | 
 |  | 
 | void testLmstr() { | 
 |   const int n = 3; | 
 |   int info; | 
 |   double fnorm; | 
 |   VectorXd x(n); | 
 |  | 
 |   /* the following starting values provide a rough fit. */ | 
 |   x.setConstant(n, 1.); | 
 |  | 
 |   // do the computation | 
 |   lmstr_functor functor; | 
 |   LevenbergMarquardt<lmstr_functor> lm(functor); | 
 |   info = lm.minimizeOptimumStorage(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return values | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 6, 5); | 
 |  | 
 |   // check norm | 
 |   fnorm = lm.fvec.blueNorm(); | 
 |   VERIFY_IS_APPROX(fnorm, 0.09063596); | 
 |  | 
 |   // check x | 
 |   VectorXd x_ref(n); | 
 |   x_ref << 0.08241058, 1.133037, 2.343695; | 
 |   VERIFY_IS_APPROX(x, x_ref); | 
 | } | 
 |  | 
 | struct lmdif_functor : Functor<double> { | 
 |   lmdif_functor(void) : Functor<double>(3, 15) {} | 
 |   int operator()(const VectorXd &x, VectorXd &fvec) const { | 
 |     int i; | 
 |     double tmp1, tmp2, tmp3; | 
 |     static const double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, | 
 |                                  3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34e0, 2.1e0,  4.39e0}; | 
 |  | 
 |     assert(x.size() == 3); | 
 |     assert(fvec.size() == 15); | 
 |     for (i = 0; i < 15; i++) { | 
 |       tmp1 = i + 1; | 
 |       tmp2 = 15 - i; | 
 |       tmp3 = tmp1; | 
 |  | 
 |       if (i >= 8) tmp3 = tmp2; | 
 |       fvec[i] = y[i] - (x[0] + tmp1 / (x[1] * tmp2 + x[2] * tmp3)); | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 |  | 
 | void testLmdif1() { | 
 |   const int n = 3; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n), fvec(15); | 
 |  | 
 |   /* the following starting values provide a rough fit. */ | 
 |   x.setConstant(n, 1.); | 
 |  | 
 |   // do the computation | 
 |   lmdif_functor functor; | 
 |   DenseIndex nfev = -1;  // initialize to avoid maybe-uninitialized warning | 
 |   info = LevenbergMarquardt<lmdif_functor>::lmdif1(functor, x, &nfev); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   VERIFY(nfev <= 26 * LM_EVAL_COUNT_TOL); | 
 |  | 
 |   // check norm | 
 |   functor(x, fvec); | 
 |   VERIFY_IS_APPROX(fvec.blueNorm(), 0.09063596); | 
 |  | 
 |   // check x | 
 |   VectorXd x_ref(n); | 
 |   x_ref << 0.0824106, 1.1330366, 2.3436947; | 
 |   VERIFY_IS_APPROX(x, x_ref); | 
 | } | 
 |  | 
 | void testLmdif() { | 
 |   const int m = 15, n = 3; | 
 |   int info; | 
 |   double fnorm, covfac; | 
 |   VectorXd x(n); | 
 |  | 
 |   /* the following starting values provide a rough fit. */ | 
 |   x.setConstant(n, 1.); | 
 |  | 
 |   // do the computation | 
 |   lmdif_functor functor; | 
 |   NumericalDiff<lmdif_functor> numDiff(functor); | 
 |   LevenbergMarquardt<NumericalDiff<lmdif_functor> > lm(numDiff); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return values | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   VERIFY(lm.nfev <= 26 * LM_EVAL_COUNT_TOL); | 
 |  | 
 |   // check norm | 
 |   fnorm = lm.fvec.blueNorm(); | 
 |   VERIFY_IS_APPROX(fnorm, 0.09063596); | 
 |  | 
 |   // check x | 
 |   VectorXd x_ref(n); | 
 |   x_ref << 0.08241058, 1.133037, 2.343695; | 
 |   VERIFY_IS_APPROX(x, x_ref); | 
 |  | 
 |   // check covariance | 
 |   covfac = fnorm * fnorm / (m - n); | 
 |   internal::covar(lm.fjac, lm.permutation.indices());  // TODO : move this as a function of lm | 
 |  | 
 |   MatrixXd cov_ref(n, n); | 
 |   cov_ref << 0.0001531202, 0.002869942, -0.002656662, 0.002869942, 0.09480937, -0.09098997, -0.002656662, -0.09098997, | 
 |       0.08778729; | 
 |  | 
 |   //  std::cout << fjac*covfac << std::endl; | 
 |  | 
 |   MatrixXd cov; | 
 |   cov = covfac * lm.fjac.topLeftCorner<n, n>(); | 
 |   VERIFY_IS_APPROX(cov, cov_ref); | 
 |   // TODO: why isn't this allowed ? : | 
 |   // VERIFY_IS_APPROX( covfac*fjac.topLeftCorner<n,n>() , cov_ref); | 
 | } | 
 |  | 
 | struct chwirut2_functor : Functor<double> { | 
 |   chwirut2_functor(void) : Functor<double>(3, 54) {} | 
 |   static const double m_x[54]; | 
 |   static const double m_y[54]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     int i; | 
 |  | 
 |     assert(b.size() == 3); | 
 |     assert(fvec.size() == 54); | 
 |     for (i = 0; i < 54; i++) { | 
 |       double x = m_x[i]; | 
 |       fvec[i] = exp(-b[0] * x) / (b[1] + b[2] * x) - m_y[i]; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 3); | 
 |     assert(fjac.rows() == 54); | 
 |     assert(fjac.cols() == 3); | 
 |     for (int i = 0; i < 54; i++) { | 
 |       double x = m_x[i]; | 
 |       double factor = 1. / (b[1] + b[2] * x); | 
 |       double e = exp(-b[0] * x); | 
 |       fjac(i, 0) = -x * e * factor; | 
 |       fjac(i, 1) = -e * factor * factor; | 
 |       fjac(i, 2) = -x * e * factor * factor; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double chwirut2_functor::m_x[54] = { | 
 |     0.500E0, 1.000E0, 1.750E0, 3.750E0, 5.750E0, 0.875E0, 2.250E0, 3.250E0, 5.250E0, 0.750E0, 1.750E0, | 
 |     2.750E0, 4.750E0, 0.625E0, 1.250E0, 2.250E0, 4.250E0, .500E0,  3.000E0, .750E0,  3.000E0, 1.500E0, | 
 |     6.000E0, 3.000E0, 6.000E0, 1.500E0, 3.000E0, .500E0,  2.000E0, 4.000E0, .750E0,  2.000E0, 5.000E0, | 
 |     .750E0,  2.250E0, 3.750E0, 5.750E0, 3.000E0, .750E0,  2.500E0, 4.000E0, .750E0,  2.500E0, 4.000E0, | 
 |     .750E0,  2.500E0, 4.000E0, .500E0,  6.000E0, 3.000E0, .500E0,  2.750E0, .500E0,  1.750E0}; | 
 | const double chwirut2_functor::m_y[54] = { | 
 |     92.9000E0, 57.1000E0, 31.0500E0, 11.5875E0, 8.0250E0,  63.6000E0, 21.4000E0, 14.2500E0, 8.4750E0, | 
 |     63.8000E0, 26.8000E0, 16.4625E0, 7.1250E0,  67.3000E0, 41.0000E0, 21.1500E0, 8.1750E0,  81.5000E0, | 
 |     13.1200E0, 59.9000E0, 14.6200E0, 32.9000E0, 5.4400E0,  12.5600E0, 5.4400E0,  32.0000E0, 13.9500E0, | 
 |     75.8000E0, 20.0000E0, 10.4200E0, 59.5000E0, 21.6700E0, 8.5500E0,  62.0000E0, 20.2000E0, 7.7600E0, | 
 |     3.7500E0,  11.8100E0, 54.7000E0, 23.7000E0, 11.5500E0, 61.3000E0, 17.7000E0, 8.7400E0,  59.2000E0, | 
 |     16.3000E0, 8.6200E0,  81.0000E0, 4.8700E0,  14.6200E0, 81.7000E0, 17.1700E0, 81.3000E0, 28.9000E0}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/chwirut2.shtml | 
 | void testNistChwirut2(void) { | 
 |   const int n = 3; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 0.1, 0.01, 0.02; | 
 |   // do the computation | 
 |   chwirut2_functor functor; | 
 |   LevenbergMarquardt<chwirut2_functor> lm(functor); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 10, 8); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.1304802941E+02); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 1.6657666537E-01); | 
 |   VERIFY_IS_APPROX(x[1], 5.1653291286E-03); | 
 |   VERIFY_IS_APPROX(x[2], 1.2150007096E-02); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 0.15, 0.008, 0.010; | 
 |   // do the computation | 
 |   lm.resetParameters(); | 
 |   lm.parameters.ftol = 1.E6 * NumTraits<double>::epsilon(); | 
 |   lm.parameters.xtol = 1.E6 * NumTraits<double>::epsilon(); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 7, 6); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.1304802941E+02); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 1.6657666537E-01); | 
 |   VERIFY_IS_APPROX(x[1], 5.1653291286E-03); | 
 |   VERIFY_IS_APPROX(x[2], 1.2150007096E-02); | 
 | } | 
 |  | 
 | struct misra1a_functor : Functor<double> { | 
 |   misra1a_functor(void) : Functor<double>(2, 14) {} | 
 |   static const double m_x[14]; | 
 |   static const double m_y[14]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     assert(b.size() == 2); | 
 |     assert(fvec.size() == 14); | 
 |     for (int i = 0; i < 14; i++) { | 
 |       fvec[i] = b[0] * (1. - exp(-b[1] * m_x[i])) - m_y[i]; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 2); | 
 |     assert(fjac.rows() == 14); | 
 |     assert(fjac.cols() == 2); | 
 |     for (int i = 0; i < 14; i++) { | 
 |       fjac(i, 0) = (1. - exp(-b[1] * m_x[i])); | 
 |       fjac(i, 1) = (b[0] * m_x[i] * exp(-b[1] * m_x[i])); | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double misra1a_functor::m_x[14] = {77.6E0,  114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, | 
 |                                          378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0}; | 
 | const double misra1a_functor::m_y[14] = {10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, | 
 |                                          44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/misra1a.shtml | 
 | void testNistMisra1a(void) { | 
 |   const int n = 2; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 500., 0.0001; | 
 |   // do the computation | 
 |   misra1a_functor functor; | 
 |   LevenbergMarquardt<misra1a_functor> lm(functor); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 19, 15); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.2455138894E-01); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 2.3894212918E+02); | 
 |   VERIFY_IS_APPROX(x[1], 5.5015643181E-04); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 250., 0.0005; | 
 |   // do the computation | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 5, 4); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.2455138894E-01); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 2.3894212918E+02); | 
 |   VERIFY_IS_APPROX(x[1], 5.5015643181E-04); | 
 | } | 
 |  | 
 | struct hahn1_functor : Functor<double> { | 
 |   hahn1_functor(void) : Functor<double>(7, 236) {} | 
 |   static const double m_x[236]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     static const double m_y[236] = { | 
 |         .591E0,   1.547E0,  2.902E0,  2.894E0,  4.703E0,  6.307E0,  7.03E0,   7.898E0,  9.470E0,  9.484E0,  10.072E0, | 
 |         10.163E0, 11.615E0, 12.005E0, 12.478E0, 12.982E0, 12.970E0, 13.926E0, 14.452E0, 14.404E0, 15.190E0, 15.550E0, | 
 |         15.528E0, 15.499E0, 16.131E0, 16.438E0, 16.387E0, 16.549E0, 16.872E0, 16.830E0, 16.926E0, 16.907E0, 16.966E0, | 
 |         17.060E0, 17.122E0, 17.311E0, 17.355E0, 17.668E0, 17.767E0, 17.803E0, 17.765E0, 17.768E0, 17.736E0, 17.858E0, | 
 |         17.877E0, 17.912E0, 18.046E0, 18.085E0, 18.291E0, 18.357E0, 18.426E0, 18.584E0, 18.610E0, 18.870E0, 18.795E0, | 
 |         19.111E0, .367E0,   .796E0,   0.892E0,  1.903E0,  2.150E0,  3.697E0,  5.870E0,  6.421E0,  7.422E0,  9.944E0, | 
 |         11.023E0, 11.87E0,  12.786E0, 14.067E0, 13.974E0, 14.462E0, 14.464E0, 15.381E0, 15.483E0, 15.59E0,  16.075E0, | 
 |         16.347E0, 16.181E0, 16.915E0, 17.003E0, 16.978E0, 17.756E0, 17.808E0, 17.868E0, 18.481E0, 18.486E0, 19.090E0, | 
 |         16.062E0, 16.337E0, 16.345E0, 16.388E0, 17.159E0, 17.116E0, 17.164E0, 17.123E0, 17.979E0, 17.974E0, 18.007E0, | 
 |         17.993E0, 18.523E0, 18.669E0, 18.617E0, 19.371E0, 19.330E0, 0.080E0,  0.248E0,  1.089E0,  1.418E0,  2.278E0, | 
 |         3.624E0,  4.574E0,  5.556E0,  7.267E0,  7.695E0,  9.136E0,  9.959E0,  9.957E0,  11.600E0, 13.138E0, 13.564E0, | 
 |         13.871E0, 13.994E0, 14.947E0, 15.473E0, 15.379E0, 15.455E0, 15.908E0, 16.114E0, 17.071E0, 17.135E0, 17.282E0, | 
 |         17.368E0, 17.483E0, 17.764E0, 18.185E0, 18.271E0, 18.236E0, 18.237E0, 18.523E0, 18.627E0, 18.665E0, 19.086E0, | 
 |         0.214E0,  0.943E0,  1.429E0,  2.241E0,  2.951E0,  3.782E0,  4.757E0,  5.602E0,  7.169E0,  8.920E0,  10.055E0, | 
 |         12.035E0, 12.861E0, 13.436E0, 14.167E0, 14.755E0, 15.168E0, 15.651E0, 15.746E0, 16.216E0, 16.445E0, 16.965E0, | 
 |         17.121E0, 17.206E0, 17.250E0, 17.339E0, 17.793E0, 18.123E0, 18.49E0,  18.566E0, 18.645E0, 18.706E0, 18.924E0, | 
 |         19.1E0,   0.375E0,  0.471E0,  1.504E0,  2.204E0,  2.813E0,  4.765E0,  9.835E0,  10.040E0, 11.946E0, 12.596E0, | 
 |         13.303E0, 13.922E0, 14.440E0, 14.951E0, 15.627E0, 15.639E0, 15.814E0, 16.315E0, 16.334E0, 16.430E0, 16.423E0, | 
 |         17.024E0, 17.009E0, 17.165E0, 17.134E0, 17.349E0, 17.576E0, 17.848E0, 18.090E0, 18.276E0, 18.404E0, 18.519E0, | 
 |         19.133E0, 19.074E0, 19.239E0, 19.280E0, 19.101E0, 19.398E0, 19.252E0, 19.89E0,  20.007E0, 19.929E0, 19.268E0, | 
 |         19.324E0, 20.049E0, 20.107E0, 20.062E0, 20.065E0, 19.286E0, 19.972E0, 20.088E0, 20.743E0, 20.83E0,  20.935E0, | 
 |         21.035E0, 20.93E0,  21.074E0, 21.085E0, 20.935E0}; | 
 |  | 
 |     //        int called=0; printf("call hahn1_functor with  iflag=%d, called=%d\n", iflag, called); if (iflag==1) | 
 |     //        called++; | 
 |  | 
 |     assert(b.size() == 7); | 
 |     assert(fvec.size() == 236); | 
 |     for (int i = 0; i < 236; i++) { | 
 |       double x = m_x[i], xx = x * x, xxx = xx * x; | 
 |       fvec[i] = (b[0] + b[1] * x + b[2] * xx + b[3] * xxx) / (1. + b[4] * x + b[5] * xx + b[6] * xxx) - m_y[i]; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 7); | 
 |     assert(fjac.rows() == 236); | 
 |     assert(fjac.cols() == 7); | 
 |     for (int i = 0; i < 236; i++) { | 
 |       double x = m_x[i], xx = x * x, xxx = xx * x; | 
 |       double fact = 1. / (1. + b[4] * x + b[5] * xx + b[6] * xxx); | 
 |       fjac(i, 0) = 1. * fact; | 
 |       fjac(i, 1) = x * fact; | 
 |       fjac(i, 2) = xx * fact; | 
 |       fjac(i, 3) = xxx * fact; | 
 |       fact = -(b[0] + b[1] * x + b[2] * xx + b[3] * xxx) * fact * fact; | 
 |       fjac(i, 4) = x * fact; | 
 |       fjac(i, 5) = xx * fact; | 
 |       fjac(i, 6) = xxx * fact; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double hahn1_functor::m_x[236] = { | 
 |     24.41E0,  34.82E0,  44.09E0,  45.07E0,  54.98E0,  65.51E0,  70.53E0,  75.70E0,  89.57E0,  91.14E0,  96.40E0, | 
 |     97.19E0,  114.26E0, 120.25E0, 127.08E0, 133.55E0, 133.61E0, 158.67E0, 172.74E0, 171.31E0, 202.14E0, 220.55E0, | 
 |     221.05E0, 221.39E0, 250.99E0, 268.99E0, 271.80E0, 271.97E0, 321.31E0, 321.69E0, 330.14E0, 333.03E0, 333.47E0, | 
 |     340.77E0, 345.65E0, 373.11E0, 373.79E0, 411.82E0, 419.51E0, 421.59E0, 422.02E0, 422.47E0, 422.61E0, 441.75E0, | 
 |     447.41E0, 448.7E0,  472.89E0, 476.69E0, 522.47E0, 522.62E0, 524.43E0, 546.75E0, 549.53E0, 575.29E0, 576.00E0, | 
 |     625.55E0, 20.15E0,  28.78E0,  29.57E0,  37.41E0,  39.12E0,  50.24E0,  61.38E0,  66.25E0,  73.42E0,  95.52E0, | 
 |     107.32E0, 122.04E0, 134.03E0, 163.19E0, 163.48E0, 175.70E0, 179.86E0, 211.27E0, 217.78E0, 219.14E0, 262.52E0, | 
 |     268.01E0, 268.62E0, 336.25E0, 337.23E0, 339.33E0, 427.38E0, 428.58E0, 432.68E0, 528.99E0, 531.08E0, 628.34E0, | 
 |     253.24E0, 273.13E0, 273.66E0, 282.10E0, 346.62E0, 347.19E0, 348.78E0, 351.18E0, 450.10E0, 450.35E0, 451.92E0, | 
 |     455.56E0, 552.22E0, 553.56E0, 555.74E0, 652.59E0, 656.20E0, 14.13E0,  20.41E0,  31.30E0,  33.84E0,  39.70E0, | 
 |     48.83E0,  54.50E0,  60.41E0,  72.77E0,  75.25E0,  86.84E0,  94.88E0,  96.40E0,  117.37E0, 139.08E0, 147.73E0, | 
 |     158.63E0, 161.84E0, 192.11E0, 206.76E0, 209.07E0, 213.32E0, 226.44E0, 237.12E0, 330.90E0, 358.72E0, 370.77E0, | 
 |     372.72E0, 396.24E0, 416.59E0, 484.02E0, 495.47E0, 514.78E0, 515.65E0, 519.47E0, 544.47E0, 560.11E0, 620.77E0, | 
 |     18.97E0,  28.93E0,  33.91E0,  40.03E0,  44.66E0,  49.87E0,  55.16E0,  60.90E0,  72.08E0,  85.15E0,  97.06E0, | 
 |     119.63E0, 133.27E0, 143.84E0, 161.91E0, 180.67E0, 198.44E0, 226.86E0, 229.65E0, 258.27E0, 273.77E0, 339.15E0, | 
 |     350.13E0, 362.75E0, 371.03E0, 393.32E0, 448.53E0, 473.78E0, 511.12E0, 524.70E0, 548.75E0, 551.64E0, 574.02E0, | 
 |     623.86E0, 21.46E0,  24.33E0,  33.43E0,  39.22E0,  44.18E0,  55.02E0,  94.33E0,  96.44E0,  118.82E0, 128.48E0, | 
 |     141.94E0, 156.92E0, 171.65E0, 190.00E0, 223.26E0, 223.88E0, 231.50E0, 265.05E0, 269.44E0, 271.78E0, 273.46E0, | 
 |     334.61E0, 339.79E0, 349.52E0, 358.18E0, 377.98E0, 394.77E0, 429.66E0, 468.22E0, 487.27E0, 519.54E0, 523.03E0, | 
 |     612.99E0, 638.59E0, 641.36E0, 622.05E0, 631.50E0, 663.97E0, 646.9E0,  748.29E0, 749.21E0, 750.14E0, 647.04E0, | 
 |     646.89E0, 746.9E0,  748.43E0, 747.35E0, 749.27E0, 647.61E0, 747.78E0, 750.51E0, 851.37E0, 845.97E0, 847.54E0, | 
 |     849.93E0, 851.61E0, 849.75E0, 850.98E0, 848.23E0}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/hahn1.shtml | 
 | void testNistHahn1(void) { | 
 |   const int n = 7; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 10., -1., .05, -.00001, -.05, .001, -.000001; | 
 |   // do the computation | 
 |   hahn1_functor functor; | 
 |   LevenbergMarquardt<hahn1_functor> lm(functor); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 11, 10); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.5324382854E+00); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 1.0776351733E+00); | 
 |   VERIFY_IS_APPROX(x[1], -1.2269296921E-01); | 
 |   VERIFY_IS_APPROX(x[2], 4.0863750610E-03); | 
 |   VERIFY_IS_APPROX(x[3], -1.426264e-06);  // shoulde be : -1.4262662514E-06 | 
 |   VERIFY_IS_APPROX(x[4], -5.7609940901E-03); | 
 |   VERIFY_IS_APPROX(x[5], 2.4053735503E-04); | 
 |   VERIFY_IS_APPROX(x[6], -1.2314450199E-07); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << .1, -.1, .005, -.000001, -.005, .0001, -.0000001; | 
 |   // do the computation | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 11, 10); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.5324382854E+00); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 1.077640);       // should be :  1.0776351733E+00 | 
 |   VERIFY_IS_APPROX(x[1], -0.1226933);     // should be : -1.2269296921E-01 | 
 |   VERIFY_IS_APPROX(x[2], 0.004086383);    // should be : 4.0863750610E-03 | 
 |   VERIFY_IS_APPROX(x[3], -1.426277e-06);  // shoulde be : -1.4262662514E-06 | 
 |   VERIFY_IS_APPROX(x[4], -5.7609940901E-03); | 
 |   VERIFY_IS_APPROX(x[5], 0.00024053772);  // should be : 2.4053735503E-04 | 
 |   VERIFY_IS_APPROX(x[6], -1.231450e-07);  // should be : -1.2314450199E-07 | 
 | } | 
 |  | 
 | struct misra1d_functor : Functor<double> { | 
 |   misra1d_functor(void) : Functor<double>(2, 14) {} | 
 |   static const double x[14]; | 
 |   static const double y[14]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     assert(b.size() == 2); | 
 |     assert(fvec.size() == 14); | 
 |     for (int i = 0; i < 14; i++) { | 
 |       fvec[i] = b[0] * b[1] * x[i] / (1. + b[1] * x[i]) - y[i]; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 2); | 
 |     assert(fjac.rows() == 14); | 
 |     assert(fjac.cols() == 2); | 
 |     for (int i = 0; i < 14; i++) { | 
 |       double den = 1. + b[1] * x[i]; | 
 |       fjac(i, 0) = b[1] * x[i] / den; | 
 |       fjac(i, 1) = b[0] * x[i] * (den - b[1] * x[i]) / den / den; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double misra1d_functor::x[14] = {77.6E0,  114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, | 
 |                                        378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0}; | 
 | const double misra1d_functor::y[14] = {10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, | 
 |                                        44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/misra1d.shtml | 
 | void testNistMisra1d(void) { | 
 |   const int n = 2; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 500., 0.0001; | 
 |   // do the computation | 
 |   misra1d_functor functor; | 
 |   LevenbergMarquardt<misra1d_functor> lm(functor); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 3); | 
 |   LM_CHECK_N_ITERS(lm, 9, 7); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6419295283E-02); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 4.3736970754E+02); | 
 |   VERIFY_IS_APPROX(x[1], 3.0227324449E-04); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 450., 0.0003; | 
 |   // do the computation | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 4, 3); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6419295283E-02); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 4.3736970754E+02); | 
 |   VERIFY_IS_APPROX(x[1], 3.0227324449E-04); | 
 | } | 
 |  | 
 | struct lanczos1_functor : Functor<double> { | 
 |   lanczos1_functor(void) : Functor<double>(6, 24) {} | 
 |   static const double x[24]; | 
 |   static const double y[24]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     assert(b.size() == 6); | 
 |     assert(fvec.size() == 24); | 
 |     for (int i = 0; i < 24; i++) | 
 |       fvec[i] = b[0] * exp(-b[1] * x[i]) + b[2] * exp(-b[3] * x[i]) + b[4] * exp(-b[5] * x[i]) - y[i]; | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 6); | 
 |     assert(fjac.rows() == 24); | 
 |     assert(fjac.cols() == 6); | 
 |     for (int i = 0; i < 24; i++) { | 
 |       fjac(i, 0) = exp(-b[1] * x[i]); | 
 |       fjac(i, 1) = -b[0] * x[i] * exp(-b[1] * x[i]); | 
 |       fjac(i, 2) = exp(-b[3] * x[i]); | 
 |       fjac(i, 3) = -b[2] * x[i] * exp(-b[3] * x[i]); | 
 |       fjac(i, 4) = exp(-b[5] * x[i]); | 
 |       fjac(i, 5) = -b[4] * x[i] * exp(-b[5] * x[i]); | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double lanczos1_functor::x[24] = {0.000000000000E+00, 5.000000000000E-02, 1.000000000000E-01, 1.500000000000E-01, | 
 |                                         2.000000000000E-01, 2.500000000000E-01, 3.000000000000E-01, 3.500000000000E-01, | 
 |                                         4.000000000000E-01, 4.500000000000E-01, 5.000000000000E-01, 5.500000000000E-01, | 
 |                                         6.000000000000E-01, 6.500000000000E-01, 7.000000000000E-01, 7.500000000000E-01, | 
 |                                         8.000000000000E-01, 8.500000000000E-01, 9.000000000000E-01, 9.500000000000E-01, | 
 |                                         1.000000000000E+00, 1.050000000000E+00, 1.100000000000E+00, 1.150000000000E+00}; | 
 | const double lanczos1_functor::y[24] = {2.513400000000E+00, 2.044333373291E+00, 1.668404436564E+00, 1.366418021208E+00, | 
 |                                         1.123232487372E+00, 9.268897180037E-01, 7.679338563728E-01, 6.388775523106E-01, | 
 |                                         5.337835317402E-01, 4.479363617347E-01, 3.775847884350E-01, 3.197393199326E-01, | 
 |                                         2.720130773746E-01, 2.324965529032E-01, 1.996589546065E-01, 1.722704126914E-01, | 
 |                                         1.493405660168E-01, 1.300700206922E-01, 1.138119324644E-01, 1.000415587559E-01, | 
 |                                         8.833209084540E-02, 7.833544019350E-02, 6.976693743449E-02, 6.239312536719E-02}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/lanczos1.shtml | 
 | void testNistLanczos1(void) { | 
 |   const int n = 6; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 1.2, 0.3, 5.6, 5.5, 6.5, 7.6; | 
 |   // do the computation | 
 |   lanczos1_functor functor; | 
 |   LevenbergMarquardt<lanczos1_functor> lm(functor); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 2); | 
 |   LM_CHECK_N_ITERS(lm, 79, 72); | 
 |   // check norm^2 | 
 |   // std::cout.precision(30); | 
 |   // std::cout << lm.fvec.squaredNorm() << "\n"; | 
 |   VERIFY(lm.fvec.squaredNorm() <= 1.44E-25); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 9.5100000027E-02); | 
 |   VERIFY_IS_APPROX(x[1], 1.0000000001E+00); | 
 |   VERIFY_IS_APPROX(x[2], 8.6070000013E-01); | 
 |   VERIFY_IS_APPROX(x[3], 3.0000000002E+00); | 
 |   VERIFY_IS_APPROX(x[4], 1.5575999998E+00); | 
 |   VERIFY_IS_APPROX(x[5], 5.0000000001E+00); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 0.5, 0.7, 3.6, 4.2, 4., 6.3; | 
 |   // do the computation | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 2); | 
 |   LM_CHECK_N_ITERS(lm, 9, 8); | 
 |   // check norm^2 | 
 |   VERIFY(lm.fvec.squaredNorm() <= 1.44E-25); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 9.5100000027E-02); | 
 |   VERIFY_IS_APPROX(x[1], 1.0000000001E+00); | 
 |   VERIFY_IS_APPROX(x[2], 8.6070000013E-01); | 
 |   VERIFY_IS_APPROX(x[3], 3.0000000002E+00); | 
 |   VERIFY_IS_APPROX(x[4], 1.5575999998E+00); | 
 |   VERIFY_IS_APPROX(x[5], 5.0000000001E+00); | 
 | } | 
 |  | 
 | struct rat42_functor : Functor<double> { | 
 |   rat42_functor(void) : Functor<double>(3, 9) {} | 
 |   static const double x[9]; | 
 |   static const double y[9]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     assert(b.size() == 3); | 
 |     assert(fvec.size() == 9); | 
 |     for (int i = 0; i < 9; i++) { | 
 |       fvec[i] = b[0] / (1. + exp(b[1] - b[2] * x[i])) - y[i]; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 3); | 
 |     assert(fjac.rows() == 9); | 
 |     assert(fjac.cols() == 3); | 
 |     for (int i = 0; i < 9; i++) { | 
 |       double e = exp(b[1] - b[2] * x[i]); | 
 |       fjac(i, 0) = 1. / (1. + e); | 
 |       fjac(i, 1) = -b[0] * e / (1. + e) / (1. + e); | 
 |       fjac(i, 2) = +b[0] * e * x[i] / (1. + e) / (1. + e); | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double rat42_functor::x[9] = {9.000E0,  14.000E0, 21.000E0, 28.000E0, 42.000E0, | 
 |                                     57.000E0, 63.000E0, 70.000E0, 79.000E0}; | 
 | const double rat42_functor::y[9] = {8.930E0,  10.800E0, 18.590E0, 22.330E0, 39.350E0, | 
 |                                     56.110E0, 61.730E0, 64.620E0, 67.080E0}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky2.shtml | 
 | void testNistRat42(void) { | 
 |   const int n = 3; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 100., 1., 0.1; | 
 |   // do the computation | 
 |   rat42_functor functor; | 
 |   LevenbergMarquardt<rat42_functor> lm(functor); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 10, 8); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.0565229338E+00); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 7.2462237576E+01); | 
 |   VERIFY_IS_APPROX(x[1], 2.6180768402E+00); | 
 |   VERIFY_IS_APPROX(x[2], 6.7359200066E-02); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 75., 2.5, 0.07; | 
 |   // do the computation | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 6, 5); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.0565229338E+00); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 7.2462237576E+01); | 
 |   VERIFY_IS_APPROX(x[1], 2.6180768402E+00); | 
 |   VERIFY_IS_APPROX(x[2], 6.7359200066E-02); | 
 | } | 
 |  | 
 | struct MGH10_functor : Functor<double> { | 
 |   MGH10_functor(void) : Functor<double>(3, 16) {} | 
 |   static const double x[16]; | 
 |   static const double y[16]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     assert(b.size() == 3); | 
 |     assert(fvec.size() == 16); | 
 |     for (int i = 0; i < 16; i++) fvec[i] = b[0] * exp(b[1] / (x[i] + b[2])) - y[i]; | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 3); | 
 |     assert(fjac.rows() == 16); | 
 |     assert(fjac.cols() == 3); | 
 |     for (int i = 0; i < 16; i++) { | 
 |       double factor = 1. / (x[i] + b[2]); | 
 |       double e = exp(b[1] * factor); | 
 |       fjac(i, 0) = e; | 
 |       fjac(i, 1) = b[0] * factor * e; | 
 |       fjac(i, 2) = -b[1] * b[0] * factor * factor * e; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double MGH10_functor::x[16] = {5.000000E+01, 5.500000E+01, 6.000000E+01, 6.500000E+01, 7.000000E+01, 7.500000E+01, | 
 |                                      8.000000E+01, 8.500000E+01, 9.000000E+01, 9.500000E+01, 1.000000E+02, 1.050000E+02, | 
 |                                      1.100000E+02, 1.150000E+02, 1.200000E+02, 1.250000E+02}; | 
 | const double MGH10_functor::y[16] = {3.478000E+04, 2.861000E+04, 2.365000E+04, 1.963000E+04, 1.637000E+04, 1.372000E+04, | 
 |                                      1.154000E+04, 9.744000E+03, 8.261000E+03, 7.030000E+03, 6.005000E+03, 5.147000E+03, | 
 |                                      4.427000E+03, 3.820000E+03, 3.307000E+03, 2.872000E+03}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/mgh10.shtml | 
 | void testNistMGH10(void) { | 
 |   const int n = 3; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 2., 400000., 25000.; | 
 |   // do the computation | 
 |   MGH10_functor functor; | 
 |   LevenbergMarquardt<MGH10_functor> lm(functor); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 2); | 
 |   LM_CHECK_N_ITERS(lm, 284, 249); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7945855171E+01); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 5.6096364710E-03); | 
 |   VERIFY_IS_APPROX(x[1], 6.1813463463E+03); | 
 |   VERIFY_IS_APPROX(x[2], 3.4522363462E+02); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 0.02, 4000., 250.; | 
 |   // do the computation | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 3); | 
 |   LM_CHECK_N_ITERS(lm, 126, 116); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7945855171E+01); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 5.6096364710E-03); | 
 |   VERIFY_IS_APPROX(x[1], 6.1813463463E+03); | 
 |   VERIFY_IS_APPROX(x[2], 3.4522363462E+02); | 
 | } | 
 |  | 
 | struct BoxBOD_functor : Functor<double> { | 
 |   BoxBOD_functor(void) : Functor<double>(2, 6) {} | 
 |   static const double x[6]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     static const double y[6] = {109., 149., 149., 191., 213., 224.}; | 
 |     assert(b.size() == 2); | 
 |     assert(fvec.size() == 6); | 
 |     for (int i = 0; i < 6; i++) fvec[i] = b[0] * (1. - exp(-b[1] * x[i])) - y[i]; | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 2); | 
 |     assert(fjac.rows() == 6); | 
 |     assert(fjac.cols() == 2); | 
 |     for (int i = 0; i < 6; i++) { | 
 |       double e = exp(-b[1] * x[i]); | 
 |       fjac(i, 0) = 1. - e; | 
 |       fjac(i, 1) = b[0] * x[i] * e; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double BoxBOD_functor::x[6] = {1., 2., 3., 5., 7., 10.}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/boxbod.shtml | 
 | void testNistBoxBOD(void) { | 
 |   const int n = 2; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 1., 1.; | 
 |   // do the computation | 
 |   BoxBOD_functor functor; | 
 |   LevenbergMarquardt<BoxBOD_functor> lm(functor); | 
 |   lm.parameters.ftol = 1.E6 * NumTraits<double>::epsilon(); | 
 |   lm.parameters.xtol = 1.E6 * NumTraits<double>::epsilon(); | 
 |   lm.parameters.factor = 10.; | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 31, 25); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.1680088766E+03); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 2.1380940889E+02); | 
 |   VERIFY_IS_APPROX(x[1], 5.4723748542E-01); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 100., 0.75; | 
 |   // do the computation | 
 |   lm.resetParameters(); | 
 |   lm.parameters.ftol = NumTraits<double>::epsilon(); | 
 |   lm.parameters.xtol = NumTraits<double>::epsilon(); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 20, 14); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.1680088766E+03); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 2.1380940889E+02); | 
 |   VERIFY_IS_APPROX(x[1], 5.4723748542E-01); | 
 | } | 
 |  | 
 | struct MGH17_functor : Functor<double> { | 
 |   MGH17_functor(void) : Functor<double>(5, 33) {} | 
 |   static const double x[33]; | 
 |   static const double y[33]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     assert(b.size() == 5); | 
 |     assert(fvec.size() == 33); | 
 |     for (int i = 0; i < 33; i++) fvec[i] = b[0] + b[1] * exp(-b[3] * x[i]) + b[2] * exp(-b[4] * x[i]) - y[i]; | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 5); | 
 |     assert(fjac.rows() == 33); | 
 |     assert(fjac.cols() == 5); | 
 |     for (int i = 0; i < 33; i++) { | 
 |       fjac(i, 0) = 1.; | 
 |       fjac(i, 1) = exp(-b[3] * x[i]); | 
 |       fjac(i, 2) = exp(-b[4] * x[i]); | 
 |       fjac(i, 3) = -x[i] * b[1] * exp(-b[3] * x[i]); | 
 |       fjac(i, 4) = -x[i] * b[2] * exp(-b[4] * x[i]); | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double MGH17_functor::x[33] = {0.000000E+00, 1.000000E+01, 2.000000E+01, 3.000000E+01, 4.000000E+01, 5.000000E+01, | 
 |                                      6.000000E+01, 7.000000E+01, 8.000000E+01, 9.000000E+01, 1.000000E+02, 1.100000E+02, | 
 |                                      1.200000E+02, 1.300000E+02, 1.400000E+02, 1.500000E+02, 1.600000E+02, 1.700000E+02, | 
 |                                      1.800000E+02, 1.900000E+02, 2.000000E+02, 2.100000E+02, 2.200000E+02, 2.300000E+02, | 
 |                                      2.400000E+02, 2.500000E+02, 2.600000E+02, 2.700000E+02, 2.800000E+02, 2.900000E+02, | 
 |                                      3.000000E+02, 3.100000E+02, 3.200000E+02}; | 
 | const double MGH17_functor::y[33] = {8.440000E-01, 9.080000E-01, 9.320000E-01, 9.360000E-01, 9.250000E-01, 9.080000E-01, | 
 |                                      8.810000E-01, 8.500000E-01, 8.180000E-01, 7.840000E-01, 7.510000E-01, 7.180000E-01, | 
 |                                      6.850000E-01, 6.580000E-01, 6.280000E-01, 6.030000E-01, 5.800000E-01, 5.580000E-01, | 
 |                                      5.380000E-01, 5.220000E-01, 5.060000E-01, 4.900000E-01, 4.780000E-01, 4.670000E-01, | 
 |                                      4.570000E-01, 4.480000E-01, 4.380000E-01, 4.310000E-01, 4.240000E-01, 4.200000E-01, | 
 |                                      4.140000E-01, 4.110000E-01, 4.060000E-01}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/mgh17.shtml | 
 | void testNistMGH17(void) { | 
 |   const int n = 5; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 50., 150., -100., 1., 2.; | 
 |   // do the computation | 
 |   MGH17_functor functor; | 
 |   LevenbergMarquardt<MGH17_functor> lm(functor); | 
 |   lm.parameters.ftol = NumTraits<double>::epsilon(); | 
 |   lm.parameters.xtol = NumTraits<double>::epsilon(); | 
 |   lm.parameters.maxfev = 1000; | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.4648946975E-05); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 3.7541005211E-01); | 
 |   VERIFY_IS_APPROX(x[1], 1.9358469127E+00); | 
 |   VERIFY_IS_APPROX(x[2], -1.4646871366E+00); | 
 |   VERIFY_IS_APPROX(x[3], 1.2867534640E-02); | 
 |   VERIFY_IS_APPROX(x[4], 2.2122699662E-02); | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 2); | 
 |   LM_CHECK_N_ITERS(lm, 602, 545); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 0.5, 1.5, -1, 0.01, 0.02; | 
 |   // do the computation | 
 |   lm.resetParameters(); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 18, 15); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.4648946975E-05); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 3.7541005211E-01); | 
 |   VERIFY_IS_APPROX(x[1], 1.9358469127E+00); | 
 |   VERIFY_IS_APPROX(x[2], -1.4646871366E+00); | 
 |   VERIFY_IS_APPROX(x[3], 1.2867534640E-02); | 
 |   VERIFY_IS_APPROX(x[4], 2.2122699662E-02); | 
 | } | 
 |  | 
 | struct MGH09_functor : Functor<double> { | 
 |   MGH09_functor(void) : Functor<double>(4, 11) {} | 
 |   static const double _x[11]; | 
 |   static const double y[11]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     assert(b.size() == 4); | 
 |     assert(fvec.size() == 11); | 
 |     for (int i = 0; i < 11; i++) { | 
 |       double x = _x[i], xx = x * x; | 
 |       fvec[i] = b[0] * (xx + x * b[1]) / (xx + x * b[2] + b[3]) - y[i]; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 4); | 
 |     assert(fjac.rows() == 11); | 
 |     assert(fjac.cols() == 4); | 
 |     for (int i = 0; i < 11; i++) { | 
 |       double x = _x[i], xx = x * x; | 
 |       double factor = 1. / (xx + x * b[2] + b[3]); | 
 |       fjac(i, 0) = (xx + x * b[1]) * factor; | 
 |       fjac(i, 1) = b[0] * x * factor; | 
 |       fjac(i, 2) = -b[0] * (xx + x * b[1]) * x * factor * factor; | 
 |       fjac(i, 3) = -b[0] * (xx + x * b[1]) * factor * factor; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double MGH09_functor::_x[11] = {4.,           2.,     1.,           5.E-1,        2.5E-01,     1.670000E-01, | 
 |                                       1.250000E-01, 1.E-01, 8.330000E-02, 7.140000E-02, 6.250000E-02}; | 
 | const double MGH09_functor::y[11] = {1.957000E-01, 1.947000E-01, 1.735000E-01, 1.600000E-01, 8.440000E-02, 6.270000E-02, | 
 |                                      4.560000E-02, 3.420000E-02, 3.230000E-02, 2.350000E-02, 2.460000E-02}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/mgh09.shtml | 
 | void testNistMGH09(void) { | 
 |   const int n = 4; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 25., 39, 41.5, 39.; | 
 |   // do the computation | 
 |   MGH09_functor functor; | 
 |   LevenbergMarquardt<MGH09_functor> lm(functor); | 
 |   lm.parameters.maxfev = 1000; | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 490, 376); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 3.0750560385E-04); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 0.1928077089);   // should be 1.9280693458E-01 | 
 |   VERIFY_IS_APPROX(x[1], 0.19126423573);  // should be 1.9128232873E-01 | 
 |   VERIFY_IS_APPROX(x[2], 0.12305309914);  // should be 1.2305650693E-01 | 
 |   VERIFY_IS_APPROX(x[3], 0.13605395375);  // should be 1.3606233068E-01 | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 0.25, 0.39, 0.415, 0.39; | 
 |   // do the computation | 
 |   lm.resetParameters(); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 18, 16); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 3.0750560385E-04); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 0.19280781);  // should be 1.9280693458E-01 | 
 |   VERIFY_IS_APPROX(x[1], 0.19126265);  // should be 1.9128232873E-01 | 
 |   VERIFY_IS_APPROX(x[2], 0.12305280);  // should be 1.2305650693E-01 | 
 |   VERIFY_IS_APPROX(x[3], 0.13605322);  // should be 1.3606233068E-01 | 
 | } | 
 |  | 
 | struct Bennett5_functor : Functor<double> { | 
 |   Bennett5_functor(void) : Functor<double>(3, 154) {} | 
 |   static const double x[154]; | 
 |   static const double y[154]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     assert(b.size() == 3); | 
 |     assert(fvec.size() == 154); | 
 |     for (int i = 0; i < 154; i++) fvec[i] = b[0] * pow(b[1] + x[i], -1. / b[2]) - y[i]; | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 3); | 
 |     assert(fjac.rows() == 154); | 
 |     assert(fjac.cols() == 3); | 
 |     for (int i = 0; i < 154; i++) { | 
 |       double e = pow(b[1] + x[i], -1. / b[2]); | 
 |       fjac(i, 0) = e; | 
 |       fjac(i, 1) = -b[0] * e / b[2] / (b[1] + x[i]); | 
 |       fjac(i, 2) = b[0] * e * log(b[1] + x[i]) / b[2] / b[2]; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double Bennett5_functor::x[154] = { | 
 |     7.447168E0,  8.102586E0,  8.452547E0,  8.711278E0,  8.916774E0,  9.087155E0,  9.232590E0,  9.359535E0,  9.472166E0, | 
 |     9.573384E0,  9.665293E0,  9.749461E0,  9.827092E0,  9.899128E0,  9.966321E0,  10.029280E0, 10.088510E0, 10.144430E0, | 
 |     10.197380E0, 10.247670E0, 10.295560E0, 10.341250E0, 10.384950E0, 10.426820E0, 10.467000E0, 10.505640E0, 10.542830E0, | 
 |     10.578690E0, 10.613310E0, 10.646780E0, 10.679150E0, 10.710520E0, 10.740920E0, 10.770440E0, 10.799100E0, 10.826970E0, | 
 |     10.854080E0, 10.880470E0, 10.906190E0, 10.931260E0, 10.955720E0, 10.979590E0, 11.002910E0, 11.025700E0, 11.047980E0, | 
 |     11.069770E0, 11.091100E0, 11.111980E0, 11.132440E0, 11.152480E0, 11.172130E0, 11.191410E0, 11.210310E0, 11.228870E0, | 
 |     11.247090E0, 11.264980E0, 11.282560E0, 11.299840E0, 11.316820E0, 11.333520E0, 11.349940E0, 11.366100E0, 11.382000E0, | 
 |     11.397660E0, 11.413070E0, 11.428240E0, 11.443200E0, 11.457930E0, 11.472440E0, 11.486750E0, 11.500860E0, 11.514770E0, | 
 |     11.528490E0, 11.542020E0, 11.555380E0, 11.568550E0, 11.581560E0, 11.594420E0, 11.607121E0, 11.619640E0, 11.632000E0, | 
 |     11.644210E0, 11.656280E0, 11.668200E0, 11.679980E0, 11.691620E0, 11.703130E0, 11.714510E0, 11.725760E0, 11.736880E0, | 
 |     11.747890E0, 11.758780E0, 11.769550E0, 11.780200E0, 11.790730E0, 11.801160E0, 11.811480E0, 11.821700E0, 11.831810E0, | 
 |     11.841820E0, 11.851730E0, 11.861550E0, 11.871270E0, 11.880890E0, 11.890420E0, 11.899870E0, 11.909220E0, 11.918490E0, | 
 |     11.927680E0, 11.936780E0, 11.945790E0, 11.954730E0, 11.963590E0, 11.972370E0, 11.981070E0, 11.989700E0, 11.998260E0, | 
 |     12.006740E0, 12.015150E0, 12.023490E0, 12.031760E0, 12.039970E0, 12.048100E0, 12.056170E0, 12.064180E0, 12.072120E0, | 
 |     12.080010E0, 12.087820E0, 12.095580E0, 12.103280E0, 12.110920E0, 12.118500E0, 12.126030E0, 12.133500E0, 12.140910E0, | 
 |     12.148270E0, 12.155570E0, 12.162830E0, 12.170030E0, 12.177170E0, 12.184270E0, 12.191320E0, 12.198320E0, 12.205270E0, | 
 |     12.212170E0, 12.219030E0, 12.225840E0, 12.232600E0, 12.239320E0, 12.245990E0, 12.252620E0, 12.259200E0, 12.265750E0, | 
 |     12.272240E0}; | 
 | const double Bennett5_functor::y[154] = { | 
 |     -34.834702E0, -34.393200E0, -34.152901E0, -33.979099E0, -33.845901E0, -33.732899E0, -33.640301E0, -33.559200E0, | 
 |     -33.486801E0, -33.423100E0, -33.365101E0, -33.313000E0, -33.260899E0, -33.217400E0, -33.176899E0, -33.139198E0, | 
 |     -33.101601E0, -33.066799E0, -33.035000E0, -33.003101E0, -32.971298E0, -32.942299E0, -32.916302E0, -32.890202E0, | 
 |     -32.864101E0, -32.841000E0, -32.817799E0, -32.797501E0, -32.774300E0, -32.757000E0, -32.733799E0, -32.716400E0, | 
 |     -32.699100E0, -32.678799E0, -32.661400E0, -32.644001E0, -32.626701E0, -32.612202E0, -32.597698E0, -32.583199E0, | 
 |     -32.568699E0, -32.554298E0, -32.539799E0, -32.525299E0, -32.510799E0, -32.499199E0, -32.487598E0, -32.473202E0, | 
 |     -32.461601E0, -32.435501E0, -32.435501E0, -32.426800E0, -32.412300E0, -32.400799E0, -32.392101E0, -32.380501E0, | 
 |     -32.366001E0, -32.357300E0, -32.348598E0, -32.339901E0, -32.328400E0, -32.319698E0, -32.311001E0, -32.299400E0, | 
 |     -32.290699E0, -32.282001E0, -32.273300E0, -32.264599E0, -32.256001E0, -32.247299E0, -32.238602E0, -32.229900E0, | 
 |     -32.224098E0, -32.215401E0, -32.203800E0, -32.198002E0, -32.189400E0, -32.183601E0, -32.174900E0, -32.169102E0, | 
 |     -32.163300E0, -32.154598E0, -32.145901E0, -32.140099E0, -32.131401E0, -32.125599E0, -32.119801E0, -32.111198E0, | 
 |     -32.105400E0, -32.096699E0, -32.090900E0, -32.088001E0, -32.079300E0, -32.073502E0, -32.067699E0, -32.061901E0, | 
 |     -32.056099E0, -32.050301E0, -32.044498E0, -32.038799E0, -32.033001E0, -32.027199E0, -32.024300E0, -32.018501E0, | 
 |     -32.012699E0, -32.004002E0, -32.001099E0, -31.995300E0, -31.989500E0, -31.983700E0, -31.977900E0, -31.972099E0, | 
 |     -31.969299E0, -31.963501E0, -31.957701E0, -31.951900E0, -31.946100E0, -31.940300E0, -31.937401E0, -31.931601E0, | 
 |     -31.925800E0, -31.922899E0, -31.917101E0, -31.911301E0, -31.908400E0, -31.902599E0, -31.896900E0, -31.893999E0, | 
 |     -31.888201E0, -31.885300E0, -31.882401E0, -31.876600E0, -31.873699E0, -31.867901E0, -31.862101E0, -31.859200E0, | 
 |     -31.856300E0, -31.850500E0, -31.844700E0, -31.841801E0, -31.838900E0, -31.833099E0, -31.830200E0, -31.827299E0, | 
 |     -31.821600E0, -31.818701E0, -31.812901E0, -31.809999E0, -31.807100E0, -31.801300E0, -31.798401E0, -31.795500E0, | 
 |     -31.789700E0, -31.786800E0}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/bennett5.shtml | 
 | void testNistBennett5(void) { | 
 |   const int n = 3; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << -2000., 50., 0.8; | 
 |   // do the computation | 
 |   Bennett5_functor functor; | 
 |   LevenbergMarquardt<Bennett5_functor> lm(functor); | 
 |   lm.parameters.maxfev = 1000; | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 758, 744); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.2404744073E-04); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], -2.5235058043E+03); | 
 |   VERIFY_IS_APPROX(x[1], 4.6736564644E+01); | 
 |   VERIFY_IS_APPROX(x[2], 9.3218483193E-01); | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << -1500., 45., 0.85; | 
 |   // do the computation | 
 |   lm.resetParameters(); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 203, 192); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.2404744073E-04); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], -2523.3007865);  // should be -2.5235058043E+03 | 
 |   VERIFY_IS_APPROX(x[1], 46.735705771);   // should be 4.6736564644E+01); | 
 |   VERIFY_IS_APPROX(x[2], 0.93219881891);  // should be 9.3218483193E-01); | 
 | } | 
 |  | 
 | struct thurber_functor : Functor<double> { | 
 |   thurber_functor(void) : Functor<double>(7, 37) {} | 
 |   static const double _x[37]; | 
 |   static const double _y[37]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     //        int called=0; printf("call hahn1_functor with  iflag=%d, called=%d\n", iflag, called); if (iflag==1) | 
 |     //        called++; | 
 |     assert(b.size() == 7); | 
 |     assert(fvec.size() == 37); | 
 |     for (int i = 0; i < 37; i++) { | 
 |       double x = _x[i], xx = x * x, xxx = xx * x; | 
 |       fvec[i] = (b[0] + b[1] * x + b[2] * xx + b[3] * xxx) / (1. + b[4] * x + b[5] * xx + b[6] * xxx) - _y[i]; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 7); | 
 |     assert(fjac.rows() == 37); | 
 |     assert(fjac.cols() == 7); | 
 |     for (int i = 0; i < 37; i++) { | 
 |       double x = _x[i], xx = x * x, xxx = xx * x; | 
 |       double fact = 1. / (1. + b[4] * x + b[5] * xx + b[6] * xxx); | 
 |       fjac(i, 0) = 1. * fact; | 
 |       fjac(i, 1) = x * fact; | 
 |       fjac(i, 2) = xx * fact; | 
 |       fjac(i, 3) = xxx * fact; | 
 |       fact = -(b[0] + b[1] * x + b[2] * xx + b[3] * xxx) * fact * fact; | 
 |       fjac(i, 4) = x * fact; | 
 |       fjac(i, 5) = xx * fact; | 
 |       fjac(i, 6) = xxx * fact; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double thurber_functor::_x[37] = {-3.067E0, -2.981E0, -2.921E0, -2.912E0, -2.840E0, -2.797E0, -2.702E0, -2.699E0, | 
 |                                         -2.633E0, -2.481E0, -2.363E0, -2.322E0, -1.501E0, -1.460E0, -1.274E0, -1.212E0, | 
 |                                         -1.100E0, -1.046E0, -0.915E0, -0.714E0, -0.566E0, -0.545E0, -0.400E0, -0.309E0, | 
 |                                         -0.109E0, -0.103E0, 0.010E0,  0.119E0,  0.377E0,  0.790E0,  0.963E0,  1.006E0, | 
 |                                         1.115E0,  1.572E0,  1.841E0,  2.047E0,  2.200E0}; | 
 | const double thurber_functor::_y[37] = { | 
 |     80.574E0,   84.248E0,   87.264E0,   87.195E0,   89.076E0,   89.608E0,   89.868E0,   90.101E0, | 
 |     92.405E0,   95.854E0,   100.696E0,  101.060E0,  401.672E0,  390.724E0,  567.534E0,  635.316E0, | 
 |     733.054E0,  759.087E0,  894.206E0,  990.785E0,  1090.109E0, 1080.914E0, 1122.643E0, 1178.351E0, | 
 |     1260.531E0, 1273.514E0, 1288.339E0, 1327.543E0, 1353.863E0, 1414.509E0, 1425.208E0, 1421.384E0, | 
 |     1442.962E0, 1464.350E0, 1468.705E0, 1447.894E0, 1457.628E0}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml | 
 | void testNistThurber(void) { | 
 |   const int n = 7; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 1000, 1000, 400, 40, 0.7, 0.3, 0.0; | 
 |   // do the computation | 
 |   thurber_functor functor; | 
 |   LevenbergMarquardt<thurber_functor> lm(functor); | 
 |   lm.parameters.ftol = 1.E4 * NumTraits<double>::epsilon(); | 
 |   lm.parameters.xtol = 1.E4 * NumTraits<double>::epsilon(); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 39, 36); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6427082397E+03); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 1.2881396800E+03); | 
 |   VERIFY_IS_APPROX(x[1], 1.4910792535E+03); | 
 |   VERIFY_IS_APPROX(x[2], 5.8323836877E+02); | 
 |   VERIFY_IS_APPROX(x[3], 7.5416644291E+01); | 
 |   VERIFY_IS_APPROX(x[4], 9.6629502864E-01); | 
 |   VERIFY_IS_APPROX(x[5], 3.9797285797E-01); | 
 |   VERIFY_IS_APPROX(x[6], 4.9727297349E-02); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 1300, 1500, 500, 75, 1, 0.4, 0.05; | 
 |   // do the computation | 
 |   lm.resetParameters(); | 
 |   lm.parameters.ftol = 1.E4 * NumTraits<double>::epsilon(); | 
 |   lm.parameters.xtol = 1.E4 * NumTraits<double>::epsilon(); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 29, 28); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6427082397E+03); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 1.2881396800E+03); | 
 |   VERIFY_IS_APPROX(x[1], 1.4910792535E+03); | 
 |   VERIFY_IS_APPROX(x[2], 5.8323836877E+02); | 
 |   VERIFY_IS_APPROX(x[3], 7.5416644291E+01); | 
 |   VERIFY_IS_APPROX(x[4], 9.6629502864E-01); | 
 |   VERIFY_IS_APPROX(x[5], 3.9797285797E-01); | 
 |   VERIFY_IS_APPROX(x[6], 4.9727297349E-02); | 
 | } | 
 |  | 
 | struct rat43_functor : Functor<double> { | 
 |   rat43_functor(void) : Functor<double>(4, 15) {} | 
 |   static const double x[15]; | 
 |   static const double y[15]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     assert(b.size() == 4); | 
 |     assert(fvec.size() == 15); | 
 |     for (int i = 0; i < 15; i++) fvec[i] = b[0] * pow(1. + exp(b[1] - b[2] * x[i]), -1. / b[3]) - y[i]; | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 4); | 
 |     assert(fjac.rows() == 15); | 
 |     assert(fjac.cols() == 4); | 
 |     for (int i = 0; i < 15; i++) { | 
 |       double e = exp(b[1] - b[2] * x[i]); | 
 |       double power = -1. / b[3]; | 
 |       fjac(i, 0) = pow(1. + e, power); | 
 |       fjac(i, 1) = power * b[0] * e * pow(1. + e, power - 1.); | 
 |       fjac(i, 2) = -power * b[0] * e * x[i] * pow(1. + e, power - 1.); | 
 |       fjac(i, 3) = b[0] * power * power * log(1. + e) * pow(1. + e, power); | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double rat43_functor::x[15] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.}; | 
 | const double rat43_functor::y[15] = {16.08,  33.83,  65.80,  97.20,  191.55, 326.20, 386.87, 520.53, | 
 |                                      590.03, 651.92, 724.93, 699.56, 689.96, 637.56, 717.41}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky3.shtml | 
 | void testNistRat43(void) { | 
 |   const int n = 4; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 100., 10., 1., 1.; | 
 |   // do the computation | 
 |   rat43_functor functor; | 
 |   LevenbergMarquardt<rat43_functor> lm(functor); | 
 |   lm.parameters.ftol = 1.E6 * NumTraits<double>::epsilon(); | 
 |   lm.parameters.xtol = 1.E6 * NumTraits<double>::epsilon(); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 27, 20); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7864049080E+03); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 6.9964151270E+02); | 
 |   VERIFY_IS_APPROX(x[1], 5.2771253025E+00); | 
 |   VERIFY_IS_APPROX(x[2], 7.5962938329E-01); | 
 |   VERIFY_IS_APPROX(x[3], 1.2792483859E+00); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 700., 5., 0.75, 1.3; | 
 |   // do the computation | 
 |   lm.resetParameters(); | 
 |   lm.parameters.ftol = 1.E5 * NumTraits<double>::epsilon(); | 
 |   lm.parameters.xtol = 1.E5 * NumTraits<double>::epsilon(); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 9, 8); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7864049080E+03); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 6.9964151270E+02); | 
 |   VERIFY_IS_APPROX(x[1], 5.2771253025E+00); | 
 |   VERIFY_IS_APPROX(x[2], 7.5962938329E-01); | 
 |   VERIFY_IS_APPROX(x[3], 1.2792483859E+00); | 
 | } | 
 |  | 
 | struct eckerle4_functor : Functor<double> { | 
 |   eckerle4_functor(void) : Functor<double>(3, 35) {} | 
 |   static const double x[35]; | 
 |   static const double y[35]; | 
 |   int operator()(const VectorXd &b, VectorXd &fvec) { | 
 |     assert(b.size() == 3); | 
 |     assert(fvec.size() == 35); | 
 |     for (int i = 0; i < 35; i++) | 
 |       fvec[i] = b[0] / b[1] * exp(-0.5 * (x[i] - b[2]) * (x[i] - b[2]) / (b[1] * b[1])) - y[i]; | 
 |     return 0; | 
 |   } | 
 |   int df(const VectorXd &b, MatrixXd &fjac) { | 
 |     assert(b.size() == 3); | 
 |     assert(fjac.rows() == 35); | 
 |     assert(fjac.cols() == 3); | 
 |     for (int i = 0; i < 35; i++) { | 
 |       double b12 = b[1] * b[1]; | 
 |       double e = exp(-0.5 * (x[i] - b[2]) * (x[i] - b[2]) / b12); | 
 |       fjac(i, 0) = e / b[1]; | 
 |       fjac(i, 1) = ((x[i] - b[2]) * (x[i] - b[2]) / b12 - 1.) * b[0] * e / b12; | 
 |       fjac(i, 2) = (x[i] - b[2]) * e * b[0] / b[1] / b12; | 
 |     } | 
 |     return 0; | 
 |   } | 
 | }; | 
 | const double eckerle4_functor::x[35] = {400.0, 405.0, 410.0, 415.0, 420.0, 425.0, 430.0, 435.0, 436.5, | 
 |                                         438.0, 439.5, 441.0, 442.5, 444.0, 445.5, 447.0, 448.5, 450.0, | 
 |                                         451.5, 453.0, 454.5, 456.0, 457.5, 459.0, 460.5, 462.0, 463.5, | 
 |                                         465.0, 470.0, 475.0, 480.0, 485.0, 490.0, 495.0, 500.0}; | 
 | const double eckerle4_functor::y[35] = {0.0001575, 0.0001699, 0.0002350, 0.0003102, 0.0004917, 0.0008710, 0.0017418, | 
 |                                         0.0046400, 0.0065895, 0.0097302, 0.0149002, 0.0237310, 0.0401683, 0.0712559, | 
 |                                         0.1264458, 0.2073413, 0.2902366, 0.3445623, 0.3698049, 0.3668534, 0.3106727, | 
 |                                         0.2078154, 0.1164354, 0.0616764, 0.0337200, 0.0194023, 0.0117831, 0.0074357, | 
 |                                         0.0022732, 0.0008800, 0.0004579, 0.0002345, 0.0001586, 0.0001143, 0.0000710}; | 
 |  | 
 | // http://www.itl.nist.gov/div898/strd/nls/data/eckerle4.shtml | 
 | void testNistEckerle4(void) { | 
 |   const int n = 3; | 
 |   int info; | 
 |  | 
 |   VectorXd x(n); | 
 |  | 
 |   /* | 
 |    * First try | 
 |    */ | 
 |   x << 1., 10., 500.; | 
 |   // do the computation | 
 |   eckerle4_functor functor; | 
 |   LevenbergMarquardt<eckerle4_functor> lm(functor); | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 18, 15); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.4635887487E-03); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 1.5543827178); | 
 |   VERIFY_IS_APPROX(x[1], 4.0888321754); | 
 |   VERIFY_IS_APPROX(x[2], 4.5154121844E+02); | 
 |  | 
 |   /* | 
 |    * Second try | 
 |    */ | 
 |   x << 1.5, 5., 450.; | 
 |   // do the computation | 
 |   info = lm.minimize(x); | 
 |   EIGEN_UNUSED_VARIABLE(info) | 
 |  | 
 |   // check return value | 
 |   // VERIFY_IS_EQUAL(info, 1); | 
 |   LM_CHECK_N_ITERS(lm, 7, 6); | 
 |   // check norm^2 | 
 |   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.4635887487E-03); | 
 |   // check x | 
 |   VERIFY_IS_APPROX(x[0], 1.5543827178); | 
 |   VERIFY_IS_APPROX(x[1], 4.0888321754); | 
 |   VERIFY_IS_APPROX(x[2], 4.5154121844E+02); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(NonLinearOptimization) { | 
 |   // Tests using the examples provided by (c)minpack | 
 |   CALL_SUBTEST /*_1*/ (testChkder()); | 
 |   CALL_SUBTEST /*_1*/ (testLmder1()); | 
 |   CALL_SUBTEST /*_1*/ (testLmder()); | 
 |   CALL_SUBTEST /*_2*/ (testHybrj1()); | 
 |   CALL_SUBTEST /*_2*/ (testHybrj()); | 
 |   CALL_SUBTEST /*_2*/ (testHybrd1()); | 
 |   CALL_SUBTEST /*_2*/ (testHybrd()); | 
 |   CALL_SUBTEST /*_3*/ (testLmstr1()); | 
 |   CALL_SUBTEST /*_3*/ (testLmstr()); | 
 |   CALL_SUBTEST /*_3*/ (testLmdif1()); | 
 |   CALL_SUBTEST /*_3*/ (testLmdif()); | 
 |  | 
 |   // NIST tests, level of difficulty = "Lower" | 
 |   CALL_SUBTEST /*_4*/ (testNistMisra1a()); | 
 |   CALL_SUBTEST /*_4*/ (testNistChwirut2()); | 
 |  | 
 |   // NIST tests, level of difficulty = "Average" | 
 |   CALL_SUBTEST /*_5*/ (testNistHahn1()); | 
 |   CALL_SUBTEST /*_6*/ (testNistMisra1d()); | 
 |   CALL_SUBTEST /*_7*/ (testNistMGH17()); | 
 |   CALL_SUBTEST /*_8*/ (testNistLanczos1()); | 
 |  | 
 |   //     // NIST tests, level of difficulty = "Higher" | 
 |   CALL_SUBTEST /*_9*/ (testNistRat42()); | 
 |   //     CALL_SUBTEST/*_10*/(testNistMGH10()); | 
 |   CALL_SUBTEST /*_11*/ (testNistBoxBOD()); | 
 |   //     CALL_SUBTEST/*_12*/(testNistMGH09()); | 
 |   CALL_SUBTEST /*_13*/ (testNistBennett5()); | 
 |   CALL_SUBTEST /*_14*/ (testNistThurber()); | 
 |   CALL_SUBTEST /*_15*/ (testNistRat43()); | 
 |   CALL_SUBTEST /*_16*/ (testNistEckerle4()); | 
 | } | 
 |  | 
 | /* | 
 |  * Can be useful for debugging... | 
 |   printf("info, nfev : %d, %d\n", info, lm.nfev); | 
 |   printf("info, nfev, njev : %d, %d, %d\n", info, solver.nfev, solver.njev); | 
 |   printf("info, nfev : %d, %d\n", info, solver.nfev); | 
 |   printf("x[0] : %.32g\n", x[0]); | 
 |   printf("x[1] : %.32g\n", x[1]); | 
 |   printf("x[2] : %.32g\n", x[2]); | 
 |   printf("x[3] : %.32g\n", x[3]); | 
 |   printf("fvec.blueNorm() : %.32g\n", solver.fvec.blueNorm()); | 
 |   printf("fvec.blueNorm() : %.32g\n", lm.fvec.blueNorm()); | 
 |  | 
 |   printf("info, nfev, njev : %d, %d, %d\n", info, lm.nfev, lm.njev); | 
 |   printf("fvec.squaredNorm() : %.13g\n", lm.fvec.squaredNorm()); | 
 |   std::cout << x << std::endl; | 
 |   std::cout.precision(9); | 
 |   std::cout << x[0] << std::endl; | 
 |   std::cout << x[1] << std::endl; | 
 |   std::cout << x[2] << std::endl; | 
 |   std::cout << x[3] << std::endl; | 
 | */ |