blob: 8c94a797e1c984744c9b6a6df90c31dd0b6f24e8 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Jacob <benoitjacob@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <iostream>
#include <cstdint>
#include <cstdlib>
#include <vector>
#include <fstream>
#include <memory>
#include <cstdio>
bool eigen_use_specific_block_size;
int eigen_block_size_k, eigen_block_size_m, eigen_block_size_n;
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZES eigen_use_specific_block_size
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K eigen_block_size_k
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M eigen_block_size_m
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N eigen_block_size_n
#include <Eigen/Core>
#include <bench/BenchTimer.h>
using namespace Eigen;
using namespace std;
static BenchTimer timer;
// how many times we repeat each measurement.
// measurements are randomly shuffled - we're not doing
// all N identical measurements in a row.
const int measurement_repetitions = 3;
// Timings below this value are too short to be accurate,
// we'll repeat measurements with more iterations until
// we get a timing above that threshold.
const float min_accurate_time = 1e-2f;
// See --min-working-set-size command line parameter.
size_t min_working_set_size = 0;
float max_clock_speed = 0.0f;
// range of sizes that we will benchmark (in all 3 K,M,N dimensions)
const size_t maxsize = 2048;
const size_t minsize = 16;
typedef MatrixXf MatrixType;
typedef MatrixType::Scalar Scalar;
typedef internal::packet_traits<Scalar>::type Packet;
static_assert((maxsize & (maxsize - 1)) == 0, "maxsize must be a power of two");
static_assert((minsize & (minsize - 1)) == 0, "minsize must be a power of two");
static_assert(maxsize > minsize, "maxsize must be larger than minsize");
static_assert(maxsize < (minsize << 16), "maxsize must be less than (minsize<<16)");
// just a helper to store a triple of K,M,N sizes for matrix product
struct size_triple_t {
size_t k, m, n;
size_triple_t() : k(0), m(0), n(0) {}
size_triple_t(size_t _k, size_t _m, size_t _n) : k(_k), m(_m), n(_n) {}
size_triple_t(const size_triple_t& o) : k(o.k), m(o.m), n(o.n) {}
size_triple_t(uint16_t compact) {
k = 1 << ((compact & 0xf00) >> 8);
m = 1 << ((compact & 0x0f0) >> 4);
n = 1 << ((compact & 0x00f) >> 0);
}
};
uint8_t log2_pot(size_t x) {
size_t l = 0;
while (x >>= 1) l++;
return l;
}
// Convert between size tripes and a compact form fitting in 12 bits
// where each size, which must be a POT, is encoded as its log2, on 4 bits
// so the largest representable size is 2^15 == 32k ... big enough.
uint16_t compact_size_triple(size_t k, size_t m, size_t n) {
return (log2_pot(k) << 8) | (log2_pot(m) << 4) | log2_pot(n);
}
uint16_t compact_size_triple(const size_triple_t& t) { return compact_size_triple(t.k, t.m, t.n); }
// A single benchmark. Initially only contains benchmark params.
// Then call run(), which stores the result in the gflops field.
struct benchmark_t {
uint16_t compact_product_size;
uint16_t compact_block_size;
bool use_default_block_size;
float gflops;
benchmark_t() : compact_product_size(0), compact_block_size(0), use_default_block_size(false), gflops(0) {}
benchmark_t(size_t pk, size_t pm, size_t pn, size_t bk, size_t bm, size_t bn)
: compact_product_size(compact_size_triple(pk, pm, pn)),
compact_block_size(compact_size_triple(bk, bm, bn)),
use_default_block_size(false),
gflops(0) {}
benchmark_t(size_t pk, size_t pm, size_t pn)
: compact_product_size(compact_size_triple(pk, pm, pn)),
compact_block_size(0),
use_default_block_size(true),
gflops(0) {}
void run();
};
ostream& operator<<(ostream& s, const benchmark_t& b) {
s << hex << b.compact_product_size << dec;
if (b.use_default_block_size) {
size_triple_t t(b.compact_product_size);
Index k = t.k, m = t.m, n = t.n;
internal::computeProductBlockingSizes<Scalar, Scalar>(k, m, n);
s << " default(" << k << ", " << m << ", " << n << ")";
} else {
s << " " << hex << b.compact_block_size << dec;
}
s << " " << b.gflops;
return s;
}
// We sort first by increasing benchmark parameters,
// then by decreasing performance.
bool operator<(const benchmark_t& b1, const benchmark_t& b2) {
return b1.compact_product_size < b2.compact_product_size ||
(b1.compact_product_size == b2.compact_product_size &&
((b1.compact_block_size < b2.compact_block_size ||
(b1.compact_block_size == b2.compact_block_size && b1.gflops > b2.gflops))));
}
void benchmark_t::run() {
size_triple_t productsizes(compact_product_size);
if (use_default_block_size) {
eigen_use_specific_block_size = false;
} else {
// feed eigen with our custom blocking params
eigen_use_specific_block_size = true;
size_triple_t blocksizes(compact_block_size);
eigen_block_size_k = blocksizes.k;
eigen_block_size_m = blocksizes.m;
eigen_block_size_n = blocksizes.n;
}
// set up the matrix pool
const size_t combined_three_matrices_sizes =
sizeof(Scalar) *
(productsizes.k * productsizes.m + productsizes.k * productsizes.n + productsizes.m * productsizes.n);
// 64 M is large enough that nobody has a cache bigger than that,
// while still being small enough that everybody has this much RAM,
// so conveniently we don't need to special-case platforms here.
const size_t unlikely_large_cache_size = 64 << 20;
const size_t working_set_size = min_working_set_size ? min_working_set_size : unlikely_large_cache_size;
const size_t matrix_pool_size = 1 + working_set_size / combined_three_matrices_sizes;
MatrixType* lhs = new MatrixType[matrix_pool_size];
MatrixType* rhs = new MatrixType[matrix_pool_size];
MatrixType* dst = new MatrixType[matrix_pool_size];
for (size_t i = 0; i < matrix_pool_size; i++) {
lhs[i] = MatrixType::Zero(productsizes.m, productsizes.k);
rhs[i] = MatrixType::Zero(productsizes.k, productsizes.n);
dst[i] = MatrixType::Zero(productsizes.m, productsizes.n);
}
// main benchmark loop
int iters_at_a_time = 1;
float time_per_iter = 0.0f;
size_t matrix_index = 0;
while (true) {
double starttime = timer.getCpuTime();
for (int i = 0; i < iters_at_a_time; i++) {
dst[matrix_index].noalias() = lhs[matrix_index] * rhs[matrix_index];
matrix_index++;
if (matrix_index == matrix_pool_size) {
matrix_index = 0;
}
}
double endtime = timer.getCpuTime();
const float timing = float(endtime - starttime);
if (timing >= min_accurate_time) {
time_per_iter = timing / iters_at_a_time;
break;
}
iters_at_a_time *= 2;
}
delete[] lhs;
delete[] rhs;
delete[] dst;
gflops = 2e-9 * productsizes.k * productsizes.m * productsizes.n / time_per_iter;
}
void print_cpuinfo() {
#ifdef __linux__
cout << "contents of /proc/cpuinfo:" << endl;
string line;
ifstream cpuinfo("/proc/cpuinfo");
if (cpuinfo.is_open()) {
while (getline(cpuinfo, line)) {
cout << line << endl;
}
cpuinfo.close();
}
cout << endl;
#elif defined __APPLE__
cout << "output of sysctl hw:" << endl;
system("sysctl hw");
cout << endl;
#endif
}
template <typename T>
string type_name() {
return "unknown";
}
template <>
string type_name<float>() {
return "float";
}
template <>
string type_name<double>() {
return "double";
}
struct action_t {
virtual const char* invokation_name() const {
abort();
return nullptr;
}
virtual void run() const { abort(); }
virtual ~action_t() {}
};
void show_usage_and_exit(int /*argc*/, char* argv[], const vector<unique_ptr<action_t>>& available_actions) {
cerr << "usage: " << argv[0] << " <action> [options...]" << endl << endl;
cerr << "available actions:" << endl << endl;
for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
cerr << " " << (*it)->invokation_name() << endl;
}
cerr << endl;
cerr << "options:" << endl << endl;
cerr << " --min-working-set-size=N:" << endl;
cerr << " Set the minimum working set size to N bytes." << endl;
cerr << " This is rounded up as needed to a multiple of matrix size." << endl;
cerr << " A larger working set lowers the chance of a warm cache." << endl;
cerr << " The default value 0 means use a large enough working" << endl;
cerr << " set to likely outsize caches." << endl;
cerr << " A value of 1 (that is, 1 byte) would mean don't do anything to" << endl;
cerr << " avoid warm caches." << endl;
exit(1);
}
float measure_clock_speed() {
cerr << "Measuring clock speed... \r" << flush;
vector<float> all_gflops;
for (int i = 0; i < 8; i++) {
benchmark_t b(1024, 1024, 1024);
b.run();
all_gflops.push_back(b.gflops);
}
sort(all_gflops.begin(), all_gflops.end());
float stable_estimate = all_gflops[2] + all_gflops[3] + all_gflops[4] + all_gflops[5];
// multiply by an arbitrary constant to discourage trying doing anything with the
// returned values besides just comparing them with each other.
float result = stable_estimate * 123.456f;
return result;
}
struct human_duration_t {
int seconds;
human_duration_t(int s) : seconds(s) {}
};
ostream& operator<<(ostream& s, const human_duration_t& d) {
int remainder = d.seconds;
if (remainder > 3600) {
int hours = remainder / 3600;
s << hours << " h ";
remainder -= hours * 3600;
}
if (remainder > 60) {
int minutes = remainder / 60;
s << minutes << " min ";
remainder -= minutes * 60;
}
if (d.seconds < 600) {
s << remainder << " s";
}
return s;
}
const char session_filename[] = "/data/local/tmp/benchmark-blocking-sizes-session.data";
void serialize_benchmarks(const char* filename, const vector<benchmark_t>& benchmarks, size_t first_benchmark_to_run) {
FILE* file = fopen(filename, "w");
if (!file) {
cerr << "Could not open file " << filename << " for writing." << endl;
cerr << "Do you have write permissions on the current working directory?" << endl;
exit(1);
}
size_t benchmarks_vector_size = benchmarks.size();
fwrite(&max_clock_speed, sizeof(max_clock_speed), 1, file);
fwrite(&benchmarks_vector_size, sizeof(benchmarks_vector_size), 1, file);
fwrite(&first_benchmark_to_run, sizeof(first_benchmark_to_run), 1, file);
fwrite(benchmarks.data(), sizeof(benchmark_t), benchmarks.size(), file);
fclose(file);
}
bool deserialize_benchmarks(const char* filename, vector<benchmark_t>& benchmarks, size_t& first_benchmark_to_run) {
FILE* file = fopen(filename, "r");
if (!file) {
return false;
}
if (1 != fread(&max_clock_speed, sizeof(max_clock_speed), 1, file)) {
return false;
}
size_t benchmarks_vector_size = 0;
if (1 != fread(&benchmarks_vector_size, sizeof(benchmarks_vector_size), 1, file)) {
return false;
}
if (1 != fread(&first_benchmark_to_run, sizeof(first_benchmark_to_run), 1, file)) {
return false;
}
benchmarks.resize(benchmarks_vector_size);
if (benchmarks.size() != fread(benchmarks.data(), sizeof(benchmark_t), benchmarks.size(), file)) {
return false;
}
unlink(filename);
return true;
}
void try_run_some_benchmarks(vector<benchmark_t>& benchmarks, double time_start, size_t& first_benchmark_to_run) {
if (first_benchmark_to_run == benchmarks.size()) {
return;
}
double time_last_progress_update = 0;
double time_last_clock_speed_measurement = 0;
double time_now = 0;
size_t benchmark_index = first_benchmark_to_run;
while (true) {
float ratio_done = float(benchmark_index) / benchmarks.size();
time_now = timer.getRealTime();
// We check clock speed every minute and at the end.
if (benchmark_index == benchmarks.size() || time_now > time_last_clock_speed_measurement + 60.0f) {
time_last_clock_speed_measurement = time_now;
// Ensure that clock speed is as expected
float current_clock_speed = measure_clock_speed();
// The tolerance needs to be smaller than the relative difference between
// clock speeds that a device could operate under.
// It seems unlikely that a device would be throttling clock speeds by
// amounts smaller than 2%.
// With a value of 1%, I was getting within noise on a Sandy Bridge.
const float clock_speed_tolerance = 0.02f;
if (current_clock_speed > (1 + clock_speed_tolerance) * max_clock_speed) {
// Clock speed is now higher than we previously measured.
// Either our initial measurement was inaccurate, which won't happen
// too many times as we are keeping the best clock speed value and
// and allowing some tolerance; or something really weird happened,
// which invalidates all benchmark results collected so far.
// Either way, we better restart all over again now.
if (benchmark_index) {
cerr << "Restarting at " << 100.0f * ratio_done << " % because clock speed increased. " << endl;
}
max_clock_speed = current_clock_speed;
first_benchmark_to_run = 0;
return;
}
bool rerun_last_tests = false;
if (current_clock_speed < (1 - clock_speed_tolerance) * max_clock_speed) {
cerr << "Measurements completed so far: " << 100.0f * ratio_done << " % " << endl;
cerr << "Clock speed seems to be only " << current_clock_speed / max_clock_speed << " times what it used to be."
<< endl;
unsigned int seconds_to_sleep_if_lower_clock_speed = 1;
while (current_clock_speed < (1 - clock_speed_tolerance) * max_clock_speed) {
if (seconds_to_sleep_if_lower_clock_speed > 32) {
cerr << "Sleeping longer probably won't make a difference." << endl;
cerr << "Serializing benchmarks to " << session_filename << endl;
serialize_benchmarks(session_filename, benchmarks, first_benchmark_to_run);
cerr << "Now restart this benchmark, and it should pick up where we left." << endl;
exit(2);
}
rerun_last_tests = true;
cerr << "Sleeping " << seconds_to_sleep_if_lower_clock_speed << " s... \r"
<< endl;
sleep(seconds_to_sleep_if_lower_clock_speed);
current_clock_speed = measure_clock_speed();
seconds_to_sleep_if_lower_clock_speed *= 2;
}
}
if (rerun_last_tests) {
cerr << "Redoing the last " << 100.0f * float(benchmark_index - first_benchmark_to_run) / benchmarks.size()
<< " % because clock speed had been low. " << endl;
return;
}
// nothing wrong with the clock speed so far, so there won't be a need to rerun
// benchmarks run so far in case we later encounter a lower clock speed.
first_benchmark_to_run = benchmark_index;
}
if (benchmark_index == benchmarks.size()) {
// We're done!
first_benchmark_to_run = benchmarks.size();
// Erase progress info
cerr << " " << endl;
return;
}
// Display progress info on stderr
if (time_now > time_last_progress_update + 1.0f) {
time_last_progress_update = time_now;
cerr << "Measurements... " << 100.0f * ratio_done << " %, ETA "
<< human_duration_t(float(time_now - time_start) * (1.0f - ratio_done) / ratio_done)
<< " \r" << flush;
}
// This is where we actually run a benchmark!
benchmarks[benchmark_index].run();
benchmark_index++;
}
}
void run_benchmarks(vector<benchmark_t>& benchmarks) {
size_t first_benchmark_to_run;
vector<benchmark_t> deserialized_benchmarks;
bool use_deserialized_benchmarks = false;
if (deserialize_benchmarks(session_filename, deserialized_benchmarks, first_benchmark_to_run)) {
cerr << "Found serialized session with " << 100.0f * first_benchmark_to_run / deserialized_benchmarks.size()
<< " % already done" << endl;
if (deserialized_benchmarks.size() == benchmarks.size() && first_benchmark_to_run > 0 &&
first_benchmark_to_run < benchmarks.size()) {
use_deserialized_benchmarks = true;
}
}
if (use_deserialized_benchmarks) {
benchmarks = deserialized_benchmarks;
} else {
// not using deserialized benchmarks, starting from scratch
first_benchmark_to_run = 0;
// Randomly shuffling benchmarks allows us to get accurate enough progress info,
// as now the cheap/expensive benchmarks are randomly mixed so they average out.
// It also means that if data is corrupted for some time span, the odds are that
// not all repetitions of a given benchmark will be corrupted.
random_shuffle(benchmarks.begin(), benchmarks.end());
}
for (int i = 0; i < 4; i++) {
max_clock_speed = max(max_clock_speed, measure_clock_speed());
}
double time_start = 0.0;
while (first_benchmark_to_run < benchmarks.size()) {
if (first_benchmark_to_run == 0) {
time_start = timer.getRealTime();
}
try_run_some_benchmarks(benchmarks, time_start, first_benchmark_to_run);
}
// Sort timings by increasing benchmark parameters, and decreasing gflops.
// The latter is very important. It means that we can ignore all but the first
// benchmark with given parameters.
sort(benchmarks.begin(), benchmarks.end());
// Collect best (i.e. now first) results for each parameter values.
vector<benchmark_t> best_benchmarks;
for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
if (best_benchmarks.empty() || best_benchmarks.back().compact_product_size != it->compact_product_size ||
best_benchmarks.back().compact_block_size != it->compact_block_size) {
best_benchmarks.push_back(*it);
}
}
// keep and return only the best benchmarks
benchmarks = best_benchmarks;
}
struct measure_all_pot_sizes_action_t : action_t {
virtual const char* invokation_name() const { return "all-pot-sizes"; }
virtual void run() const {
vector<benchmark_t> benchmarks;
for (int repetition = 0; repetition < measurement_repetitions; repetition++) {
for (size_t ksize = minsize; ksize <= maxsize; ksize *= 2) {
for (size_t msize = minsize; msize <= maxsize; msize *= 2) {
for (size_t nsize = minsize; nsize <= maxsize; nsize *= 2) {
for (size_t kblock = minsize; kblock <= ksize; kblock *= 2) {
for (size_t mblock = minsize; mblock <= msize; mblock *= 2) {
for (size_t nblock = minsize; nblock <= nsize; nblock *= 2) {
benchmarks.emplace_back(ksize, msize, nsize, kblock, mblock, nblock);
}
}
}
}
}
}
}
run_benchmarks(benchmarks);
cout << "BEGIN MEASUREMENTS ALL POT SIZES" << endl;
for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
cout << *it << endl;
}
}
};
struct measure_default_sizes_action_t : action_t {
virtual const char* invokation_name() const { return "default-sizes"; }
virtual void run() const {
vector<benchmark_t> benchmarks;
for (int repetition = 0; repetition < measurement_repetitions; repetition++) {
for (size_t ksize = minsize; ksize <= maxsize; ksize *= 2) {
for (size_t msize = minsize; msize <= maxsize; msize *= 2) {
for (size_t nsize = minsize; nsize <= maxsize; nsize *= 2) {
benchmarks.emplace_back(ksize, msize, nsize);
}
}
}
}
run_benchmarks(benchmarks);
cout << "BEGIN MEASUREMENTS DEFAULT SIZES" << endl;
for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
cout << *it << endl;
}
}
};
int main(int argc, char* argv[]) {
double time_start = timer.getRealTime();
cout.precision(4);
cerr.precision(4);
vector<unique_ptr<action_t>> available_actions;
available_actions.emplace_back(new measure_all_pot_sizes_action_t);
available_actions.emplace_back(new measure_default_sizes_action_t);
auto action = available_actions.end();
if (argc <= 1) {
show_usage_and_exit(argc, argv, available_actions);
}
for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
if (!strcmp(argv[1], (*it)->invokation_name())) {
action = it;
break;
}
}
if (action == available_actions.end()) {
show_usage_and_exit(argc, argv, available_actions);
}
for (int i = 2; i < argc; i++) {
if (argv[i] == strstr(argv[i], "--min-working-set-size=")) {
const char* equals_sign = strchr(argv[i], '=');
min_working_set_size = strtoul(equals_sign + 1, nullptr, 10);
} else {
cerr << "unrecognized option: " << argv[i] << endl << endl;
show_usage_and_exit(argc, argv, available_actions);
}
}
print_cpuinfo();
cout << "benchmark parameters:" << endl;
cout << "pointer size: " << 8 * sizeof(void*) << " bits" << endl;
cout << "scalar type: " << type_name<Scalar>() << endl;
cout << "packet size: " << internal::packet_traits<MatrixType::Scalar>::size << endl;
cout << "minsize = " << minsize << endl;
cout << "maxsize = " << maxsize << endl;
cout << "measurement_repetitions = " << measurement_repetitions << endl;
cout << "min_accurate_time = " << min_accurate_time << endl;
cout << "min_working_set_size = " << min_working_set_size;
if (min_working_set_size == 0) {
cout << " (try to outsize caches)";
}
cout << endl << endl;
(*action)->run();
double time_end = timer.getRealTime();
cerr << "Finished in " << human_duration_t(time_end - time_start) << endl;
}