blob: 955c8167880e2fb60c3cf1119cf7581c03730b36 [file] [log] [blame]
//=====================================================
// File : blitz_LU_solve_interface.hh
// Author : L. Plagne <laurent.plagne@edf.fr)>
// Copyright (C) EDF R&D, lun sep 30 14:23:31 CEST 2002
//=====================================================
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
#ifndef BLITZ_LU_SOLVE_INTERFACE_HH
#define BLITZ_LU_SOLVE_INTERFACE_HH
#include "blitz/array.h"
#include <vector>
BZ_USING_NAMESPACE(blitz)
template <class real>
class blitz_LU_solve_interface : public blitz_interface<real> {
public:
typedef typename blitz_interface<real>::gene_matrix gene_matrix;
typedef typename blitz_interface<real>::gene_vector gene_vector;
typedef blitz::Array<int, 1> Pivot_Vector;
inline static void new_Pivot_Vector(Pivot_Vector &pivot, int N) { pivot.resize(N); }
inline static void free_Pivot_Vector(Pivot_Vector &pivot) { return; }
static inline real matrix_vector_product_sliced(const gene_matrix &A, gene_vector B, int row, int col_start,
int col_end) {
real somme = 0.;
for (int j = col_start; j < col_end + 1; j++) {
somme += A(row, j) * B(j);
}
return somme;
}
static inline real matrix_matrix_product_sliced(gene_matrix &A, int row, int col_start, int col_end, gene_matrix &B,
int row_shift, int col) {
real somme = 0.;
for (int j = col_start; j < col_end + 1; j++) {
somme += A(row, j) * B(j + row_shift, col);
}
return somme;
}
inline static void LU_factor(gene_matrix &LU, Pivot_Vector &pivot, int N) {
ASSERT(LU.rows() == LU.cols());
int index_max = 0;
real big = 0.;
real theSum = 0.;
real dum = 0.;
// Get the implicit scaling information :
gene_vector ImplicitScaling(N);
for (int i = 0; i < N; i++) {
big = 0.;
for (int j = 0; j < N; j++) {
if (abs(LU(i, j)) >= big) big = abs(LU(i, j));
}
if (big == 0.) {
INFOS("blitz_LU_factor::Singular matrix");
exit(0);
}
ImplicitScaling(i) = 1. / big;
}
// Loop over columns of Crout's method :
for (int j = 0; j < N; j++) {
for (int i = 0; i < j; i++) {
theSum = LU(i, j);
theSum -= matrix_matrix_product_sliced(LU, i, 0, i - 1, LU, 0, j);
// theSum -= sum( LU( i, Range( fromStart, i-1 ) )*LU( Range( fromStart, i-1 ), j ) ) ;
LU(i, j) = theSum;
}
// Search for the largest pivot element :
big = 0.;
for (int i = j; i < N; i++) {
theSum = LU(i, j);
theSum -= matrix_matrix_product_sliced(LU, i, 0, j - 1, LU, 0, j);
// theSum -= sum( LU( i, Range( fromStart, j-1 ) )*LU( Range( fromStart, j-1 ), j ) ) ;
LU(i, j) = theSum;
if ((ImplicitScaling(i) * abs(theSum)) >= big) {
dum = ImplicitScaling(i) * abs(theSum);
big = dum;
index_max = i;
}
}
// Interchanging rows and the scale factor :
if (j != index_max) {
for (int k = 0; k < N; k++) {
dum = LU(index_max, k);
LU(index_max, k) = LU(j, k);
LU(j, k) = dum;
}
ImplicitScaling(index_max) = ImplicitScaling(j);
}
pivot(j) = index_max;
if (LU(j, j) == 0.) LU(j, j) = 1.e-20;
// Divide by the pivot element :
if (j < N) {
dum = 1. / LU(j, j);
for (int i = j + 1; i < N; i++) LU(i, j) *= dum;
}
}
}
inline static void LU_solve(const gene_matrix &LU, const Pivot_Vector pivot, gene_vector &B, gene_vector X, int N) {
// Pour conserver le meme header, on travaille sur X, copie du second-membre B
X = B.copy();
ASSERT(LU.rows() == LU.cols());
firstIndex indI;
// Forward substitution :
int ii = 0;
real theSum = 0.;
for (int i = 0; i < N; i++) {
int ip = pivot(i);
theSum = X(ip);
// theSum = B( ip ) ;
X(ip) = X(i);
// B( ip ) = B( i ) ;
if (ii) {
theSum -= matrix_vector_product_sliced(LU, X, i, ii - 1, i - 1);
// theSum -= sum( LU( i, Range( ii-1, i-1 ) )*X( Range( ii-1, i-1 ) ) ) ;
// theSum -= sum( LU( i, Range( ii-1, i-1 ) )*B( Range( ii-1, i-1 ) ) ) ;
} else if (theSum) {
ii = i + 1;
}
X(i) = theSum;
// B( i ) = theSum ;
}
// Backsubstitution :
for (int i = N - 1; i >= 0; i--) {
theSum = X(i);
// theSum = B( i ) ;
theSum -= matrix_vector_product_sliced(LU, X, i, i + 1, N);
// theSum -= sum( LU( i, Range( i+1, toEnd ) )*X( Range( i+1, toEnd ) ) ) ;
// theSum -= sum( LU( i, Range( i+1, toEnd ) )*B( Range( i+1, toEnd ) ) ) ;
// Store a component of the solution vector :
X(i) = theSum / LU(i, i);
// B( i ) = theSum/LU( i, i ) ;
}
}
};
#endif