| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // The computeRoots function included in this is based on materials |
| // covered by the following copyright and license: |
| // |
| // Geometric Tools, LLC |
| // Copyright (c) 1998-2010 |
| // Distributed under the Boost Software License, Version 1.0. |
| // |
| // Permission is hereby granted, free of charge, to any person or organization |
| // obtaining a copy of the software and accompanying documentation covered by |
| // this license (the "Software") to use, reproduce, display, distribute, |
| // execute, and transmit the Software, and to prepare derivative works of the |
| // Software, and to permit third-parties to whom the Software is furnished to |
| // do so, all subject to the following: |
| // |
| // The copyright notices in the Software and this entire statement, including |
| // the above license grant, this restriction and the following disclaimer, |
| // must be included in all copies of the Software, in whole or in part, and |
| // all derivative works of the Software, unless such copies or derivative |
| // works are solely in the form of machine-executable object code generated by |
| // a source language processor. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT |
| // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE |
| // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, |
| // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| // DEALINGS IN THE SOFTWARE. |
| |
| #include <iostream> |
| #include <Eigen/Core> |
| #include <Eigen/Eigenvalues> |
| #include <Eigen/Geometry> |
| #include <bench/BenchTimer.h> |
| |
| using namespace Eigen; |
| using namespace std; |
| |
| template <typename Matrix, typename Roots> |
| inline void computeRoots(const Matrix& m, Roots& roots) { |
| typedef typename Matrix::Scalar Scalar; |
| const Scalar s_inv3 = 1.0 / 3.0; |
| const Scalar s_sqrt3 = std::sqrt(Scalar(3.0)); |
| |
| // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The |
| // eigenvalues are the roots to this equation, all guaranteed to be |
| // real-valued, because the matrix is symmetric. |
| Scalar c0 = m(0, 0) * m(1, 1) * m(2, 2) + Scalar(2) * m(0, 1) * m(0, 2) * m(1, 2) - m(0, 0) * m(1, 2) * m(1, 2) - |
| m(1, 1) * m(0, 2) * m(0, 2) - m(2, 2) * m(0, 1) * m(0, 1); |
| Scalar c1 = m(0, 0) * m(1, 1) - m(0, 1) * m(0, 1) + m(0, 0) * m(2, 2) - m(0, 2) * m(0, 2) + m(1, 1) * m(2, 2) - |
| m(1, 2) * m(1, 2); |
| Scalar c2 = m(0, 0) + m(1, 1) + m(2, 2); |
| |
| // Construct the parameters used in classifying the roots of the equation |
| // and in solving the equation for the roots in closed form. |
| Scalar c2_over_3 = c2 * s_inv3; |
| Scalar a_over_3 = (c1 - c2 * c2_over_3) * s_inv3; |
| if (a_over_3 > Scalar(0)) a_over_3 = Scalar(0); |
| |
| Scalar half_b = Scalar(0.5) * (c0 + c2_over_3 * (Scalar(2) * c2_over_3 * c2_over_3 - c1)); |
| |
| Scalar q = half_b * half_b + a_over_3 * a_over_3 * a_over_3; |
| if (q > Scalar(0)) q = Scalar(0); |
| |
| // Compute the eigenvalues by solving for the roots of the polynomial. |
| Scalar rho = std::sqrt(-a_over_3); |
| Scalar theta = std::atan2(std::sqrt(-q), half_b) * s_inv3; |
| Scalar cos_theta = std::cos(theta); |
| Scalar sin_theta = std::sin(theta); |
| roots(2) = c2_over_3 + Scalar(2) * rho * cos_theta; |
| roots(0) = c2_over_3 - rho * (cos_theta + s_sqrt3 * sin_theta); |
| roots(1) = c2_over_3 - rho * (cos_theta - s_sqrt3 * sin_theta); |
| } |
| |
| template <typename Matrix, typename Vector> |
| void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals) { |
| typedef typename Matrix::Scalar Scalar; |
| // Scale the matrix so its entries are in [-1,1]. The scaling is applied |
| // only when at least one matrix entry has magnitude larger than 1. |
| |
| Scalar shift = mat.trace() / 3; |
| Matrix scaledMat = mat; |
| scaledMat.diagonal().array() -= shift; |
| Scalar scale = scaledMat.cwiseAbs() /*.template triangularView<Lower>()*/.maxCoeff(); |
| scale = std::max(scale, Scalar(1)); |
| scaledMat /= scale; |
| |
| // Compute the eigenvalues |
| // scaledMat.setZero(); |
| computeRoots(scaledMat, evals); |
| |
| // compute the eigen vectors |
| // **here we assume 3 different eigenvalues** |
| |
| // "optimized version" which appears to be slower with gcc! |
| // Vector base; |
| // Scalar alpha, beta; |
| // base << scaledMat(1,0) * scaledMat(2,1), |
| // scaledMat(1,0) * scaledMat(2,0), |
| // -scaledMat(1,0) * scaledMat(1,0); |
| // for(int k=0; k<2; ++k) |
| // { |
| // alpha = scaledMat(0,0) - evals(k); |
| // beta = scaledMat(1,1) - evals(k); |
| // evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized(); |
| // } |
| // evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized(); |
| |
| // // naive version |
| // Matrix tmp; |
| // tmp = scaledMat; |
| // tmp.diagonal().array() -= evals(0); |
| // evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized(); |
| // |
| // tmp = scaledMat; |
| // tmp.diagonal().array() -= evals(1); |
| // evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized(); |
| // |
| // tmp = scaledMat; |
| // tmp.diagonal().array() -= evals(2); |
| // evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized(); |
| |
| // a more stable version: |
| if ((evals(2) - evals(0)) <= Eigen::NumTraits<Scalar>::epsilon()) { |
| evecs.setIdentity(); |
| } else { |
| Matrix tmp; |
| tmp = scaledMat; |
| tmp.diagonal().array() -= evals(2); |
| evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized(); |
| |
| tmp = scaledMat; |
| tmp.diagonal().array() -= evals(1); |
| evecs.col(1) = tmp.row(0).cross(tmp.row(1)); |
| Scalar n1 = evecs.col(1).norm(); |
| if (n1 <= Eigen::NumTraits<Scalar>::epsilon()) |
| evecs.col(1) = evecs.col(2).unitOrthogonal(); |
| else |
| evecs.col(1) /= n1; |
| |
| // make sure that evecs[1] is orthogonal to evecs[2] |
| evecs.col(1) = evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized(); |
| evecs.col(0) = evecs.col(2).cross(evecs.col(1)); |
| } |
| |
| // Rescale back to the original size. |
| evals *= scale; |
| evals.array() += shift; |
| } |
| |
| int main() { |
| BenchTimer t; |
| int tries = 10; |
| int rep = 400000; |
| typedef Matrix3d Mat; |
| typedef Vector3d Vec; |
| Mat A = Mat::Random(3, 3); |
| A = A.adjoint() * A; |
| // Mat Q = A.householderQr().householderQ(); |
| // A = Q * Vec(2.2424567,2.2424566,7.454353).asDiagonal() * Q.transpose(); |
| |
| SelfAdjointEigenSolver<Mat> eig(A); |
| BENCH(t, tries, rep, eig.compute(A)); |
| std::cout << "Eigen iterative: " << t.best() << "s\n"; |
| |
| BENCH(t, tries, rep, eig.computeDirect(A)); |
| std::cout << "Eigen direct : " << t.best() << "s\n"; |
| |
| Mat evecs; |
| Vec evals; |
| BENCH(t, tries, rep, eigen33(A, evecs, evals)); |
| std::cout << "Direct: " << t.best() << "s\n\n"; |
| |
| // std::cerr << "Eigenvalue/eigenvector diffs:\n"; |
| // std::cerr << (evals - eig.eigenvalues()).transpose() << "\n"; |
| // for(int k=0;k<3;++k) |
| // if(evecs.col(k).dot(eig.eigenvectors().col(k))<0) |
| // evecs.col(k) = -evecs.col(k); |
| // std::cerr << evecs - eig.eigenvectors() << "\n\n"; |
| } |