| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "lapack_common.h" |
| #include <Eigen/SVD> |
| |
| // computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer |
| EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork, |
| EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info)) |
| { |
| // TODO exploit the work buffer |
| bool query_size = *lwork==-1; |
| int diag_size = (std::min)(*m,*n); |
| |
| *info = 0; |
| if(*jobz!='A' && *jobz!='S' && *jobz!='O' && *jobz!='N') *info = -1; |
| else if(*m<0) *info = -2; |
| else if(*n<0) *info = -3; |
| else if(*lda<std::max(1,*m)) *info = -5; |
| else if(*lda<std::max(1,*m)) *info = -8; |
| else if(*ldu <1 || (*jobz=='A' && *ldu <*m) |
| || (*jobz=='O' && *m<*n && *ldu<*m)) *info = -8; |
| else if(*ldvt<1 || (*jobz=='A' && *ldvt<*n) |
| || (*jobz=='S' && *ldvt<diag_size) |
| || (*jobz=='O' && *m>=*n && *ldvt<*n)) *info = -10; |
| |
| if(*info!=0) |
| { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP"GESDD ", &e, 6); |
| } |
| |
| if(query_size) |
| { |
| *lwork = 0; |
| return 0; |
| } |
| |
| if(*n==0 || *m==0) |
| return 0; |
| |
| PlainMatrixType mat(*m,*n); |
| mat = matrix(a,*m,*n,*lda); |
| |
| int option = *jobz=='A' ? ComputeFullU|ComputeFullV |
| : *jobz=='S' ? ComputeThinU|ComputeThinV |
| : *jobz=='O' ? ComputeThinU|ComputeThinV |
| : 0; |
| |
| BDCSVD<PlainMatrixType> svd(mat,option); |
| |
| make_vector(s,diag_size) = svd.singularValues().head(diag_size); |
| |
| if(*jobz=='A') |
| { |
| matrix(u,*m,*m,*ldu) = svd.matrixU(); |
| matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); |
| } |
| else if(*jobz=='S') |
| { |
| matrix(u,*m,diag_size,*ldu) = svd.matrixU(); |
| matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint(); |
| } |
| else if(*jobz=='O' && *m>=*n) |
| { |
| matrix(a,*m,*n,*lda) = svd.matrixU(); |
| matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); |
| } |
| else if(*jobz=='O') |
| { |
| matrix(u,*m,*m,*ldu) = svd.matrixU(); |
| matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint(); |
| } |
| |
| return 0; |
| } |
| |
| // computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm |
| EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork, |
| EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info)) |
| { |
| // TODO exploit the work buffer |
| bool query_size = *lwork==-1; |
| int diag_size = (std::min)(*m,*n); |
| |
| *info = 0; |
| if( *jobu!='A' && *jobu!='S' && *jobu!='O' && *jobu!='N') *info = -1; |
| else if((*jobv!='A' && *jobv!='S' && *jobv!='O' && *jobv!='N') |
| || (*jobu=='O' && *jobv=='O')) *info = -2; |
| else if(*m<0) *info = -3; |
| else if(*n<0) *info = -4; |
| else if(*lda<std::max(1,*m)) *info = -6; |
| else if(*ldu <1 || ((*jobu=='A' || *jobu=='S') && *ldu<*m)) *info = -9; |
| else if(*ldvt<1 || (*jobv=='A' && *ldvt<*n) |
| || (*jobv=='S' && *ldvt<diag_size)) *info = -11; |
| |
| if(*info!=0) |
| { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP"GESVD ", &e, 6); |
| } |
| |
| if(query_size) |
| { |
| *lwork = 0; |
| return 0; |
| } |
| |
| if(*n==0 || *m==0) |
| return 0; |
| |
| PlainMatrixType mat(*m,*n); |
| mat = matrix(a,*m,*n,*lda); |
| |
| int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0) |
| | (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0); |
| |
| JacobiSVD<PlainMatrixType> svd(mat,option); |
| |
| make_vector(s,diag_size) = svd.singularValues().head(diag_size); |
| { |
| if(*jobu=='A') matrix(u,*m,*m,*ldu) = svd.matrixU(); |
| else if(*jobu=='S') matrix(u,*m,diag_size,*ldu) = svd.matrixU(); |
| else if(*jobu=='O') matrix(a,*m,diag_size,*lda) = svd.matrixU(); |
| } |
| { |
| if(*jobv=='A') matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); |
| else if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint(); |
| else if(*jobv=='O') matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint(); |
| } |
| return 0; |
| } |