| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Claire Maurice |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H |
| #define EIGEN_COMPLEX_EIGEN_SOLVER_H |
| |
| /** \eigenvalues_module \ingroup Eigenvalues_Module |
| * \nonstableyet |
| * |
| * \class ComplexEigenSolver |
| * |
| * \brief Eigen values/vectors solver for general complex matrices |
| * |
| * \param MatrixType the type of the matrix of which we are computing the eigen decomposition |
| * |
| * \sa class EigenSolver, class SelfAdjointEigenSolver |
| */ |
| template<typename _MatrixType> class ComplexEigenSolver |
| { |
| public: |
| typedef _MatrixType MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef std::complex<RealScalar> Complex; |
| typedef Matrix<Complex, MatrixType::ColsAtCompileTime,1> EigenvalueType; |
| typedef Matrix<Complex, MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime> EigenvectorType; |
| |
| /** |
| * \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via ComplexEigenSolver::compute(const MatrixType&). |
| */ |
| ComplexEigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false) |
| {} |
| |
| ComplexEigenSolver(const MatrixType& matrix) |
| : m_eivec(matrix.rows(),matrix.cols()), |
| m_eivalues(matrix.cols()), |
| m_isInitialized(false) |
| { |
| compute(matrix); |
| } |
| |
| EigenvectorType eigenvectors(void) const |
| { |
| ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| return m_eivec; |
| } |
| |
| EigenvalueType eigenvalues() const |
| { |
| ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| return m_eivalues; |
| } |
| |
| void compute(const MatrixType& matrix); |
| |
| protected: |
| MatrixType m_eivec; |
| EigenvalueType m_eivalues; |
| bool m_isInitialized; |
| }; |
| |
| |
| template<typename MatrixType> |
| void ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix) |
| { |
| // this code is inspired from Jampack |
| assert(matrix.cols() == matrix.rows()); |
| int n = matrix.cols(); |
| m_eivalues.resize(n,1); |
| m_eivec.resize(n,n); |
| |
| RealScalar eps = epsilon<RealScalar>(); |
| |
| // Reduce to complex Schur form |
| ComplexSchur<MatrixType> schur(matrix); |
| |
| m_eivalues = schur.matrixT().diagonal(); |
| |
| m_eivec.setZero(); |
| |
| Scalar d2, z; |
| RealScalar norm = matrix.norm(); |
| |
| // compute the (normalized) eigenvectors |
| for(int k=n-1 ; k>=0 ; k--) |
| { |
| d2 = schur.matrixT().coeff(k,k); |
| m_eivec.coeffRef(k,k) = Scalar(1.0,0.0); |
| for(int i=k-1 ; i>=0 ; i--) |
| { |
| m_eivec.coeffRef(i,k) = -schur.matrixT().coeff(i,k); |
| if(k-i-1>0) |
| m_eivec.coeffRef(i,k) -= (schur.matrixT().row(i).segment(i+1,k-i-1) * m_eivec.col(k).segment(i+1,k-i-1)).value(); |
| z = schur.matrixT().coeff(i,i) - d2; |
| if(z==Scalar(0)) |
| ei_real_ref(z) = eps * norm; |
| m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) / z; |
| |
| } |
| m_eivec.col(k).normalize(); |
| } |
| |
| m_eivec = schur.matrixU() * m_eivec; |
| m_isInitialized = true; |
| |
| // sort the eigenvalues |
| { |
| for (int i=0; i<n; i++) |
| { |
| int k; |
| m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k); |
| if (k != 0) |
| { |
| k += i; |
| std::swap(m_eivalues[k],m_eivalues[i]); |
| m_eivec.col(i).swap(m_eivec.col(k)); |
| } |
| } |
| } |
| } |
| |
| |
| |
| #endif // EIGEN_COMPLEX_EIGEN_SOLVER_H |