| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template<typename MatrixType> void array_for_matrix(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; | 
 |   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols); | 
 |  | 
 |   ColVectorType cv1 = ColVectorType::Random(rows); | 
 |   RowVectorType rv1 = RowVectorType::Random(cols); | 
 |  | 
 |   Scalar  s1 = ei_random<Scalar>(), | 
 |           s2 = ei_random<Scalar>(); | 
 |  | 
 |   // scalar addition | 
 |   VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array()); | 
 |   VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1); | 
 |   VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) ); | 
 |   m3 = m1; | 
 |   m3.array() += s2; | 
 |   VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix()); | 
 |   m3 = m1; | 
 |   m3.array() -= s1; | 
 |   VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix()); | 
 |  | 
 |   // reductions | 
 |   VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum()); | 
 |   VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum()); | 
 |   if (!ei_isApprox(m1.sum(), (m1+m2).sum())) | 
 |     VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); | 
 |   VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(ei_scalar_sum_op<Scalar>())); | 
 |  | 
 |   // vector-wise ops | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); | 
 | } | 
 |  | 
 | template<typename MatrixType> void comparisons(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   Index r = ei_random<Index>(0, rows-1), | 
 |         c = ei_random<Index>(0, cols-1); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols); | 
 |  | 
 |   VERIFY(((m1.array() + Scalar(1)) > m1.array()).all()); | 
 |   VERIFY(((m1.array() - Scalar(1)) < m1.array()).all()); | 
 |   if (rows*cols>1) | 
 |   { | 
 |     m3 = m1; | 
 |     m3(r,c) += 1; | 
 |     VERIFY(! (m1.array() < m3.array()).all() ); | 
 |     VERIFY(! (m1.array() > m3.array()).all() ); | 
 |   } | 
 |  | 
 |   // comparisons to scalar | 
 |   VERIFY( (m1.array() != (m1(r,c)+1) ).any() ); | 
 |   VERIFY( (m1.array() > (m1(r,c)-1) ).any() ); | 
 |   VERIFY( (m1.array() < (m1(r,c)+1) ).any() ); | 
 |   VERIFY( (m1.array() == m1(r,c) ).any() ); | 
 |  | 
 |   // test Select | 
 |   VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) ); | 
 |   VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) ); | 
 |   Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); | 
 |   for (int j=0; j<cols; ++j) | 
 |   for (int i=0; i<rows; ++i) | 
 |     m3(i,j) = ei_abs(m1(i,j))<mid ? 0 : m1(i,j); | 
 |   VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array()) | 
 |                         .select(MatrixType::Zero(rows,cols),m1), m3); | 
 |   // shorter versions: | 
 |   VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array()) | 
 |                         .select(0,m1), m3); | 
 |   VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array()) | 
 |                         .select(m1,0), m3); | 
 |   // even shorter version: | 
 |   VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3); | 
 |  | 
 |   // count | 
 |   VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols); | 
 |  | 
 |   typedef Matrix<typename MatrixType::Index, Dynamic, 1> VectorOfIndices; | 
 |  | 
 |   // TODO allows colwise/rowwise for array | 
 |   VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose()); | 
 |   VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols)); | 
 | } | 
 |  | 
 | template<typename VectorType> void lpNorm(const VectorType& v) | 
 | { | 
 |   VectorType u = VectorType::Random(v.size()); | 
 |  | 
 |   VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff()); | 
 |   VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum()); | 
 |   VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.array().abs().square().sum())); | 
 |   VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum()); | 
 | } | 
 |  | 
 | void test_array_for_matrix() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( array_for_matrix(Matrix2f()) ); | 
 |     CALL_SUBTEST_3( array_for_matrix(Matrix4d()) ); | 
 |     CALL_SUBTEST_4( array_for_matrix(MatrixXcf(3, 3)) ); | 
 |     CALL_SUBTEST_5( array_for_matrix(MatrixXf(8, 12)) ); | 
 |     CALL_SUBTEST_6( array_for_matrix(MatrixXi(8, 12)) ); | 
 |   } | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( comparisons(Matrix2f()) ); | 
 |     CALL_SUBTEST_3( comparisons(Matrix4d()) ); | 
 |     CALL_SUBTEST_5( comparisons(MatrixXf(8, 12)) ); | 
 |     CALL_SUBTEST_6( comparisons(MatrixXi(8, 12)) ); | 
 |   } | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( lpNorm(Vector2f()) ); | 
 |     CALL_SUBTEST_7( lpNorm(Vector3d()) ); | 
 |     CALL_SUBTEST_8( lpNorm(Vector4f()) ); | 
 |     CALL_SUBTEST_5( lpNorm(VectorXf(16)) ); | 
 |     CALL_SUBTEST_4( lpNorm(VectorXcf(10)) ); | 
 |   } | 
 | } |