|  | #include <Eigen/StdVector> | 
|  | #include <unsupported/Eigen/BVH> | 
|  | #include <iostream> | 
|  |  | 
|  | using namespace Eigen; | 
|  | typedef AlignedBox<double, 2> Box2d; | 
|  |  | 
|  | Box2d ei_bounding_box(const Vector2d &v) { return Box2d(v, v); } //compute the bounding box of a single point | 
|  |  | 
|  | struct PointPointMinimizer //how to compute squared distances between points and rectangles | 
|  | { | 
|  | PointPointMinimizer() : calls(0) {} | 
|  | typedef double Scalar; | 
|  |  | 
|  | double minimumOnVolumeVolume(const Box2d &r1, const Box2d &r2) { ++calls; return r1.squaredExteriorDistance(r2); } | 
|  | double minimumOnVolumeObject(const Box2d &r, const Vector2d &v) { ++calls; return r.squaredExteriorDistance(v); } | 
|  | double minimumOnObjectVolume(const Vector2d &v, const Box2d &r) { ++calls; return r.squaredExteriorDistance(v); } | 
|  | double minimumOnObjectObject(const Vector2d &v1, const Vector2d &v2) { ++calls; return (v1 - v2).squaredNorm(); } | 
|  |  | 
|  | int calls; | 
|  | }; | 
|  |  | 
|  | int main() | 
|  | { | 
|  | typedef std::vector<Vector2d, aligned_allocator<Vector2d> > StdVectorOfVector2d; | 
|  | StdVectorOfVector2d redPoints, bluePoints; | 
|  | for(int i = 0; i < 100; ++i) { //initialize random set of red points and blue points | 
|  | redPoints.push_back(Vector2d::Random()); | 
|  | bluePoints.push_back(Vector2d::Random()); | 
|  | } | 
|  |  | 
|  | PointPointMinimizer minimizer; | 
|  | double minDistSq = std::numeric_limits<double>::max(); | 
|  |  | 
|  | //brute force to find closest red-blue pair | 
|  | for(int i = 0; i < (int)redPoints.size(); ++i) | 
|  | for(int j = 0; j < (int)bluePoints.size(); ++j) | 
|  | minDistSq = std::min(minDistSq, minimizer.minimumOnObjectObject(redPoints[i], bluePoints[j])); | 
|  | std::cout << "Brute force distance = " << sqrt(minDistSq) << ", calls = " << minimizer.calls << std::endl; | 
|  |  | 
|  | //using BVH to find closest red-blue pair | 
|  | minimizer.calls = 0; | 
|  | KdBVH<double, 2, Vector2d> redTree(redPoints.begin(), redPoints.end()), blueTree(bluePoints.begin(), bluePoints.end()); //construct the trees | 
|  | minDistSq = BVMinimize(redTree, blueTree, minimizer); //actual BVH minimization call | 
|  | std::cout << "BVH distance         = " << sqrt(minDistSq) << ", calls = " << minimizer.calls << std::endl; | 
|  |  | 
|  | return 0; | 
|  | } |