| #include <typeinfo> |
| #include <iostream> |
| #include <Eigen/Core> |
| #include "BenchTimer.h" |
| using namespace Eigen; |
| using namespace std; |
| |
| template<typename T> |
| EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(T& v) |
| { |
| return v.norm(); |
| } |
| |
| template<typename T> |
| EIGEN_DONT_INLINE typename T::Scalar stableNorm(T& v) |
| { |
| return v.stableNorm(); |
| } |
| |
| template<typename T> |
| EIGEN_DONT_INLINE typename T::Scalar hypotNorm(T& v) |
| { |
| return v.hypotNorm(); |
| } |
| |
| template<typename T> |
| EIGEN_DONT_INLINE typename T::Scalar blueNorm(T& v) |
| { |
| return v.blueNorm(); |
| } |
| |
| template<typename T> |
| EIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v) |
| { |
| typedef typename T::Scalar Scalar; |
| int n = v.size(); |
| Scalar scale = 0; |
| Scalar ssq = 1; |
| for (int i=0;i<n;++i) |
| { |
| Scalar ax = std::abs(v.coeff(i)); |
| if (scale >= ax) |
| { |
| ssq += numext::abs2(ax/scale); |
| } |
| else |
| { |
| ssq = Scalar(1) + ssq * numext::abs2(scale/ax); |
| scale = ax; |
| } |
| } |
| return scale * std::sqrt(ssq); |
| } |
| |
| template<typename T> |
| EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v) |
| { |
| typedef typename T::Scalar Scalar; |
| Scalar s = v.array().abs().maxCoeff(); |
| return s*(v/s).norm(); |
| } |
| |
| template<typename T> |
| EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v) |
| { |
| return v.stableNorm(); |
| } |
| |
| template<typename T> |
| EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v) |
| { |
| int n =v.size() / 2; |
| for (int i=0;i<n;++i) |
| v(i) = v(2*i)*v(2*i) + v(2*i+1)*v(2*i+1); |
| n = n/2; |
| while (n>0) |
| { |
| for (int i=0;i<n;++i) |
| v(i) = v(2*i) + v(2*i+1); |
| n = n/2; |
| } |
| return std::sqrt(v(0)); |
| } |
| |
| namespace Eigen { |
| namespace internal { |
| #ifdef EIGEN_VECTORIZE |
| Packet4f plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a,b); } |
| Packet2d plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a,b); } |
| |
| Packet4f pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a,b); } |
| Packet2d pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a,b); } |
| #endif |
| } |
| } |
| |
| template<typename T> |
| EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v) |
| { |
| #ifndef EIGEN_VECTORIZE |
| return v.blueNorm(); |
| #else |
| typedef typename T::Scalar Scalar; |
| |
| static int nmax = 0; |
| static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr; |
| int n; |
| |
| if(nmax <= 0) |
| { |
| int nbig, ibeta, it, iemin, iemax, iexp; |
| Scalar abig, eps; |
| |
| nbig = std::numeric_limits<int>::max(); // largest integer |
| ibeta = std::numeric_limits<Scalar>::radix; //NumTraits<Scalar>::Base; // base for floating-point numbers |
| it = std::numeric_limits<Scalar>::digits; //NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa |
| iemin = std::numeric_limits<Scalar>::min_exponent; // minimum exponent |
| iemax = std::numeric_limits<Scalar>::max_exponent; // maximum exponent |
| rbig = std::numeric_limits<Scalar>::max(); // largest floating-point number |
| |
| // Check the basic machine-dependent constants. |
| if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) |
| || (it<=4 && ibeta <= 3 ) || it<2) |
| { |
| eigen_assert(false && "the algorithm cannot be guaranteed on this computer"); |
| } |
| iexp = -((1-iemin)/2); |
| b1 = std::pow(ibeta, iexp); // lower boundary of midrange |
| iexp = (iemax + 1 - it)/2; |
| b2 = std::pow(ibeta,iexp); // upper boundary of midrange |
| |
| iexp = (2-iemin)/2; |
| s1m = std::pow(ibeta,iexp); // scaling factor for lower range |
| iexp = - ((iemax+it)/2); |
| s2m = std::pow(ibeta,iexp); // scaling factor for upper range |
| |
| overfl = rbig*s2m; // overfow boundary for abig |
| eps = std::pow(ibeta, 1-it); |
| relerr = std::sqrt(eps); // tolerance for neglecting asml |
| abig = 1.0/eps - 1.0; |
| if (Scalar(nbig)>abig) nmax = abig; // largest safe n |
| else nmax = nbig; |
| } |
| |
| typedef typename internal::packet_traits<Scalar>::type Packet; |
| const int ps = internal::packet_traits<Scalar>::size; |
| Packet pasml = internal::pset1<Packet>(Scalar(0)); |
| Packet pamed = internal::pset1<Packet>(Scalar(0)); |
| Packet pabig = internal::pset1<Packet>(Scalar(0)); |
| Packet ps2m = internal::pset1<Packet>(s2m); |
| Packet ps1m = internal::pset1<Packet>(s1m); |
| Packet pb2 = internal::pset1<Packet>(b2); |
| Packet pb1 = internal::pset1<Packet>(b1); |
| for(int j=0; j<v.size(); j+=ps) |
| { |
| Packet ax = internal::pabs(v.template packet<Aligned>(j)); |
| Packet ax_s2m = internal::pmul(ax,ps2m); |
| Packet ax_s1m = internal::pmul(ax,ps1m); |
| Packet maskBig = internal::plt(pb2,ax); |
| Packet maskSml = internal::plt(ax,pb1); |
| |
| // Packet maskMed = internal::pand(maskSml,maskBig); |
| // Packet scale = internal::pset1(Scalar(0)); |
| // scale = internal::por(scale, internal::pand(maskBig,ps2m)); |
| // scale = internal::por(scale, internal::pand(maskSml,ps1m)); |
| // scale = internal::por(scale, internal::pandnot(internal::pset1(Scalar(1)),maskMed)); |
| // ax = internal::pmul(ax,scale); |
| // ax = internal::pmul(ax,ax); |
| // pabig = internal::padd(pabig, internal::pand(maskBig, ax)); |
| // pasml = internal::padd(pasml, internal::pand(maskSml, ax)); |
| // pamed = internal::padd(pamed, internal::pandnot(ax,maskMed)); |
| |
| |
| pabig = internal::padd(pabig, internal::pand(maskBig, internal::pmul(ax_s2m,ax_s2m))); |
| pasml = internal::padd(pasml, internal::pand(maskSml, internal::pmul(ax_s1m,ax_s1m))); |
| pamed = internal::padd(pamed, internal::pandnot(internal::pmul(ax,ax),internal::pand(maskSml,maskBig))); |
| } |
| Scalar abig = internal::predux(pabig); |
| Scalar asml = internal::predux(pasml); |
| Scalar amed = internal::predux(pamed); |
| if(abig > Scalar(0)) |
| { |
| abig = std::sqrt(abig); |
| if(abig > overfl) |
| { |
| eigen_assert(false && "overflow"); |
| return rbig; |
| } |
| if(amed > Scalar(0)) |
| { |
| abig = abig/s2m; |
| amed = std::sqrt(amed); |
| } |
| else |
| { |
| return abig/s2m; |
| } |
| |
| } |
| else if(asml > Scalar(0)) |
| { |
| if (amed > Scalar(0)) |
| { |
| abig = std::sqrt(amed); |
| amed = std::sqrt(asml) / s1m; |
| } |
| else |
| { |
| return std::sqrt(asml)/s1m; |
| } |
| } |
| else |
| { |
| return std::sqrt(amed); |
| } |
| asml = std::min(abig, amed); |
| abig = std::max(abig, amed); |
| if(asml <= abig*relerr) |
| return abig; |
| else |
| return abig * std::sqrt(Scalar(1) + numext::abs2(asml/abig)); |
| #endif |
| } |
| |
| #define BENCH_PERF(NRM) { \ |
| float af = 0; double ad = 0; std::complex<float> ac = 0; \ |
| Eigen::BenchTimer tf, td, tcf; tf.reset(); td.reset(); tcf.reset();\ |
| for (int k=0; k<tries; ++k) { \ |
| tf.start(); \ |
| for (int i=0; i<iters; ++i) { af += NRM(vf); } \ |
| tf.stop(); \ |
| } \ |
| for (int k=0; k<tries; ++k) { \ |
| td.start(); \ |
| for (int i=0; i<iters; ++i) { ad += NRM(vd); } \ |
| td.stop(); \ |
| } \ |
| /*for (int k=0; k<std::max(1,tries/3); ++k) { \ |
| tcf.start(); \ |
| for (int i=0; i<iters; ++i) { ac += NRM(vcf); } \ |
| tcf.stop(); \ |
| } */\ |
| std::cout << #NRM << "\t" << tf.value() << " " << td.value() << " " << tcf.value() << "\n"; \ |
| } |
| |
| void check_accuracy(double basef, double based, int s) |
| { |
| double yf = basef * std::abs(internal::random<double>()); |
| double yd = based * std::abs(internal::random<double>()); |
| VectorXf vf = VectorXf::Ones(s) * yf; |
| VectorXd vd = VectorXd::Ones(s) * yd; |
| |
| std::cout << "reference\t" << std::sqrt(double(s))*yf << "\t" << std::sqrt(double(s))*yd << "\n"; |
| std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\n"; |
| std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\n"; |
| std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n"; |
| std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n"; |
| std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n"; |
| std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\n"; |
| std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\n"; |
| } |
| |
| void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s) |
| { |
| VectorXf vf(s); |
| VectorXd vd(s); |
| for (int i=0; i<s; ++i) |
| { |
| vf[i] = std::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ef0,ef1)); |
| vd[i] = std::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ed0,ed1)); |
| } |
| |
| //std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" << internal::sqrt(double(s))*yd << "\n"; |
| std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\t" << sqsumNorm(vf.cast<long double>()) << "\t" << sqsumNorm(vd.cast<long double>()) << "\n"; |
| std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\t" << hypotNorm(vf.cast<long double>()) << "\t" << hypotNorm(vd.cast<long double>()) << "\n"; |
| std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; |
| std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; |
| std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n"; |
| std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n"; |
| // std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n"; |
| } |
| |
| int main(int argc, char** argv) |
| { |
| int tries = 10; |
| int iters = 100000; |
| double y = 1.1345743233455785456788e12 * internal::random<double>(); |
| VectorXf v = VectorXf::Ones(1024) * y; |
| |
| // return 0; |
| int s = 10000; |
| double basef_ok = 1.1345743233455785456788e15; |
| double based_ok = 1.1345743233455785456788e95; |
| |
| double basef_under = 1.1345743233455785456788e-27; |
| double based_under = 1.1345743233455785456788e-303; |
| |
| double basef_over = 1.1345743233455785456788e+27; |
| double based_over = 1.1345743233455785456788e+302; |
| |
| std::cout.precision(20); |
| |
| std::cerr << "\nNo under/overflow:\n"; |
| check_accuracy(basef_ok, based_ok, s); |
| |
| std::cerr << "\nUnderflow:\n"; |
| check_accuracy(basef_under, based_under, s); |
| |
| std::cerr << "\nOverflow:\n"; |
| check_accuracy(basef_over, based_over, s); |
| |
| std::cerr << "\nVarying (over):\n"; |
| for (int k=0; k<1; ++k) |
| { |
| check_accuracy_var(20,27,190,302,s); |
| std::cout << "\n"; |
| } |
| |
| std::cerr << "\nVarying (under):\n"; |
| for (int k=0; k<1; ++k) |
| { |
| check_accuracy_var(-27,20,-302,-190,s); |
| std::cout << "\n"; |
| } |
| |
| y = 1; |
| std::cout.precision(4); |
| int s1 = 1024*1024*32; |
| std::cerr << "Performance (out of cache, " << s1 << "):\n"; |
| { |
| int iters = 1; |
| VectorXf vf = VectorXf::Random(s1) * y; |
| VectorXd vd = VectorXd::Random(s1) * y; |
| VectorXcf vcf = VectorXcf::Random(s1) * y; |
| BENCH_PERF(sqsumNorm); |
| BENCH_PERF(stableNorm); |
| BENCH_PERF(blueNorm); |
| BENCH_PERF(pblueNorm); |
| BENCH_PERF(lapackNorm); |
| BENCH_PERF(hypotNorm); |
| BENCH_PERF(twopassNorm); |
| BENCH_PERF(bl2passNorm); |
| } |
| |
| std::cerr << "\nPerformance (in cache, " << 512 << "):\n"; |
| { |
| int iters = 100000; |
| VectorXf vf = VectorXf::Random(512) * y; |
| VectorXd vd = VectorXd::Random(512) * y; |
| VectorXcf vcf = VectorXcf::Random(512) * y; |
| BENCH_PERF(sqsumNorm); |
| BENCH_PERF(stableNorm); |
| BENCH_PERF(blueNorm); |
| BENCH_PERF(pblueNorm); |
| BENCH_PERF(lapackNorm); |
| BENCH_PERF(hypotNorm); |
| BENCH_PERF(twopassNorm); |
| BENCH_PERF(bl2passNorm); |
| } |
| } |