| #ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |
| #define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |
| |
| typedef int TensorIndex; |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| |
| #include "unsupported/Eigen/CXX11/Tensor" |
| #include "benchmark.h" |
| |
| #define BENCHMARK_RANGE(bench, lo, hi) \ |
| BENCHMARK(bench)->Range(lo, hi) |
| |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| |
| // TODO(bsteiner): also templatize on the input type since we have users |
| // for int8 as well as floats. |
| template <typename Device, typename T> class BenchmarkSuite { |
| public: |
| BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n) |
| : m_(m), k_(k), n_(n), device_(device) { |
| initialize(); |
| } |
| |
| BenchmarkSuite(const Device& device, size_t m) |
| : m_(m), k_(m), n_(m), device_(device) { |
| initialize(); |
| } |
| |
| ~BenchmarkSuite() { |
| device_.deallocate(a_); |
| device_.deallocate(b_); |
| device_.deallocate(c_); |
| } |
| |
| void memcpy(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| device_.memcpy(c_, a_, m_ * m_ * sizeof(T)); |
| } |
| // Record the number of values copied per second |
| finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| } |
| |
| void typeCasting(int num_iters) { |
| eigen_assert(m_ == n_); |
| Eigen::array<TensorIndex, 2> sizes; |
| if (sizeof(T) >= sizeof(int)) { |
| sizes[0] = m_; |
| sizes[1] = k_; |
| } else { |
| sizes[0] = m_ * sizeof(T) / sizeof(int); |
| sizes[1] = k_ * sizeof(T) / sizeof(int); |
| } |
| const TensorMap<Tensor<int, 2, 0, TensorIndex>, Eigen::Aligned> A((int*)a_, sizes); |
| TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, sizes); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| B.device(device_) = A.template cast<T>(); |
| } |
| // Record the number of values copied per second |
| finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| } |
| |
| void random(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| Eigen::array<TensorIndex, 2> sizes; |
| sizes[0] = m_; |
| sizes[1] = m_; |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = C.random(); |
| } |
| // Record the number of random numbers generated per second |
| finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| } |
| |
| void slicing(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| Eigen::array<TensorIndex, 2> sizes; |
| sizes[0] = m_; |
| sizes[1] = m_; |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| |
| const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_/2, m_/2); |
| const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0); |
| const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_/2); |
| const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_/2, 0); |
| const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_/2, m_/2); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.slice(first_quadrant, quarter_sizes).device(device_) = |
| A.slice(first_quadrant, quarter_sizes); |
| C.slice(second_quadrant, quarter_sizes).device(device_) = |
| B.slice(second_quadrant, quarter_sizes); |
| C.slice(third_quadrant, quarter_sizes).device(device_) = |
| A.slice(third_quadrant, quarter_sizes); |
| C.slice(fourth_quadrant, quarter_sizes).device(device_) = |
| B.slice(fourth_quadrant, quarter_sizes); |
| } |
| // Record the number of values copied from the rhs slice to the lhs slice |
| // each second |
| finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| } |
| |
| void rowChip(int num_iters) { |
| Eigen::array<TensorIndex, 2> input_size; |
| input_size[0] = k_; |
| input_size[1] = n_; |
| const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); |
| Eigen::array<TensorIndex, 1> output_size; |
| output_size[0] = n_; |
| TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = B.chip(iter % k_, 0); |
| } |
| // Record the number of values copied from the rhs chip to the lhs. |
| finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); |
| } |
| |
| void colChip(int num_iters) { |
| Eigen::array<TensorIndex, 2> input_size; |
| input_size[0] = k_; |
| input_size[1] = n_; |
| const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); |
| Eigen::array<TensorIndex, 1> output_size; |
| output_size[0] = n_; |
| TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = B.chip(iter % n_, 1); |
| } |
| // Record the number of values copied from the rhs chip to the lhs. |
| finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); |
| } |
| |
| void shuffling(int num_iters) { |
| eigen_assert(m_ == n_); |
| Eigen::array<TensorIndex, 2> size_a; |
| size_a[0] = m_; |
| size_a[1] = k_; |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| Eigen::array<TensorIndex, 2> size_b; |
| size_b[0] = k_; |
| size_b[1] = m_; |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); |
| |
| Eigen::array<int, 2> shuffle; |
| shuffle[0] = 1; |
| shuffle[1] = 0; |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| B.device(device_) = A.shuffle(shuffle); |
| } |
| // Record the number of values shuffled from A and copied to B each second |
| finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| } |
| |
| void padding(int num_iters) { |
| eigen_assert(m_ == k_); |
| Eigen::array<TensorIndex, 2> size_a; |
| size_a[0] = m_; |
| size_a[1] = k_-3; |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| Eigen::array<TensorIndex, 2> size_b; |
| size_b[0] = k_; |
| size_b[1] = m_; |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); |
| |
| #if defined(EIGEN_HAS_INDEX_LIST) |
| Eigen::IndexPairList<Eigen::type2indexpair<0, 0>, |
| Eigen::type2indexpair<2, 1> > paddings; |
| #else |
| Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings; |
| paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0); |
| paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1); |
| #endif |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| B.device(device_) = A.pad(paddings); |
| } |
| // Record the number of values copied from the padded tensor A each second |
| finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| } |
| |
| void striding(int num_iters) { |
| eigen_assert(m_ == k_); |
| Eigen::array<TensorIndex, 2> size_a; |
| size_a[0] = m_; |
| size_a[1] = k_; |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| Eigen::array<TensorIndex, 2> size_b; |
| size_b[0] = m_; |
| size_b[1] = k_/2; |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); |
| |
| #ifndef EIGEN_HAS_INDEX_LIST |
| Eigen::array<TensorIndex, 2> strides; |
| strides[0] = 1; |
| strides[1] = 2; |
| #else |
| // Take advantage of cxx11 to give the compiler information it can use to |
| // optimize the code. |
| Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> > strides; |
| #endif |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| B.device(device_) = A.stride(strides); |
| } |
| // Record the number of values copied from the padded tensor A each second |
| finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| } |
| |
| void broadcasting(int num_iters) { |
| Eigen::array<TensorIndex, 2> size_a; |
| size_a[0] = m_; |
| size_a[1] = 1; |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| Eigen::array<TensorIndex, 2> size_c; |
| size_c[0] = m_; |
| size_c[1] = n_; |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c); |
| |
| #ifndef EIGEN_HAS_INDEX_LIST |
| Eigen::array<int, 2> broadcast; |
| broadcast[0] = 1; |
| broadcast[1] = n_; |
| #else |
| // Take advantage of cxx11 to give the compiler information it can use to |
| // optimize the code. |
| Eigen::IndexList<Eigen::type2index<1>, int> broadcast; |
| broadcast.set(1, n_); |
| #endif |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A.broadcast(broadcast); |
| } |
| // Record the number of values broadcasted from A and copied to C each second |
| finalizeBenchmark(static_cast<int64_t>(m_) * n_ * num_iters); |
| } |
| |
| void coeffWiseOp(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| Eigen::array<TensorIndex, 2> sizes; |
| sizes[0] = m_; |
| sizes[1] = m_; |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7)); |
| } |
| // Record the number of FLOP executed per second (2 multiplications and |
| // 1 addition per value) |
| finalizeBenchmark(static_cast<int64_t>(3) * m_ * m_ * num_iters); |
| } |
| |
| void algebraicFunc(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| Eigen::array<TensorIndex, 2> sizes; |
| sizes[0] = m_; |
| sizes[1] = m_; |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); |
| } |
| // Record the number of FLOP executed per second (assuming one operation |
| // per value) |
| finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| } |
| |
| void transcendentalFunc(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| Eigen::array<TensorIndex, 2> sizes; |
| sizes[0] = m_; |
| sizes[1] = m_; |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A.exp() + B.log(); |
| } |
| // Record the number of FLOP executed per second (assuming one operation |
| // per value) |
| finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| } |
| |
| // Row reduction |
| void rowReduction(int num_iters) { |
| Eigen::array<TensorIndex, 2> input_size; |
| input_size[0] = k_; |
| input_size[1] = n_; |
| const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); |
| Eigen::array<TensorIndex, 1> output_size; |
| output_size[0] = n_; |
| TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); |
| |
| #ifndef EIGEN_HAS_INDEX_LIST |
| Eigen::array<TensorIndex, 1> sum_along_dim; |
| sum_along_dim[0] = 0; |
| #else |
| // Take advantage of cxx11 to give the compiler information it can use to |
| // optimize the code. |
| Eigen::IndexList<Eigen::type2index<0>> sum_along_dim; |
| #endif |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = B.sum(sum_along_dim); |
| } |
| // Record the number of FLOP executed per second (assuming one operation |
| // per value) |
| finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); |
| } |
| |
| // Column reduction |
| void colReduction(int num_iters) { |
| Eigen::array<TensorIndex, 2> input_size; |
| input_size[0] = k_; |
| input_size[1] = n_; |
| const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B( |
| b_, input_size); |
| Eigen::array<TensorIndex, 1> output_size; |
| output_size[0] = k_; |
| TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C( |
| c_, output_size); |
| |
| #ifndef EIGEN_HAS_INDEX_LIST |
| Eigen::array<TensorIndex, 1> sum_along_dim; |
| sum_along_dim[0] = 1; |
| #else |
| // Take advantage of cxx11 to give the compiler information it can use to |
| // optimize the code. |
| Eigen::IndexList<Eigen::type2index<1>> sum_along_dim; |
| #endif |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = B.sum(sum_along_dim); |
| } |
| // Record the number of FLOP executed per second (assuming one operation |
| // per value) |
| finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); |
| } |
| |
| // Full reduction |
| void fullReduction(int num_iters) { |
| Eigen::array<TensorIndex, 2> input_size; |
| input_size[0] = k_; |
| input_size[1] = n_; |
| const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B( |
| b_, input_size); |
| Eigen::array<TensorIndex, 0> output_size; |
| TensorMap<Tensor<T, 0, 0, TensorIndex>, Eigen::Aligned> C( |
| c_, output_size); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = B.sum(); |
| } |
| // Record the number of FLOP executed per second (assuming one operation |
| // per value) |
| finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); |
| } |
| |
| // do a contraction which is equivalent to a matrix multiplication |
| void contraction(int num_iters) { |
| Eigen::array<TensorIndex, 2> sizeA; |
| sizeA[0] = m_; |
| sizeA[1] = k_; |
| Eigen::array<TensorIndex, 2> sizeB; |
| sizeB[0] = k_; |
| sizeB[1] = n_; |
| Eigen::array<TensorIndex, 2> sizeC; |
| sizeC[0] = m_; |
| sizeC[1] = n_; |
| |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizeA); |
| const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizeB); |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizeC); |
| |
| typedef typename Tensor<T, 2>::DimensionPair DimPair; |
| Eigen::array<DimPair, 1> dims; |
| dims[0] = DimPair(1, 0); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A.contract(B, dims); |
| } |
| // Record the number of FLOP executed per second (size_ multiplications and |
| // additions for each value in the resulting tensor) |
| finalizeBenchmark(static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters); |
| } |
| |
| void convolution(int num_iters, int kernel_x, int kernel_y) { |
| Eigen::array<TensorIndex, 2> input_sizes; |
| input_sizes[0] = m_; |
| input_sizes[1] = n_; |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, input_sizes); |
| Eigen::array<TensorIndex, 2> kernel_sizes; |
| kernel_sizes[0] = kernel_x; |
| kernel_sizes[1] = kernel_y; |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, kernel_sizes); |
| Eigen::array<TensorIndex, 2> result_sizes; |
| result_sizes[0] = m_ - kernel_x + 1; |
| result_sizes[1] = n_ - kernel_y + 1; |
| TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, result_sizes); |
| Eigen::array<TensorIndex, 2> dims; |
| dims[0] = 0; |
| dims[1] = 1; |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A.convolve(B, dims); |
| } |
| // Record the number of FLOP executed per second (kernel_size |
| // multiplications and additions for each value in the resulting tensor) |
| finalizeBenchmark(static_cast<int64_t>(2) * |
| (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * num_iters); |
| } |
| |
| private: |
| void initialize() { |
| a_ = (T *) device_.allocate(m_ * k_ * sizeof(T)); |
| b_ = (T *) device_.allocate(k_ * n_ * sizeof(T)); |
| c_ = (T *) device_.allocate(m_ * n_ * sizeof(T)); |
| |
| // Initialize the content of the memory pools to prevent asan from |
| // complaining. |
| device_.memset(a_, 12, m_ * k_ * sizeof(T)); |
| device_.memset(b_, 23, k_ * n_ * sizeof(T)); |
| device_.memset(c_, 31, m_ * n_ * sizeof(T)); |
| |
| //BenchmarkUseRealTime(); |
| } |
| |
| inline void finalizeBenchmark(int64_t num_items) { |
| #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) |
| if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) { |
| device_.synchronize(); |
| } |
| #endif |
| StopBenchmarkTiming(); |
| SetBenchmarkFlopsProcessed(num_items); |
| } |
| |
| |
| TensorIndex m_; |
| TensorIndex k_; |
| TensorIndex n_; |
| T* a_; |
| T* b_; |
| T* c_; |
| Device device_; |
| }; |
| #endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |